Image Categorization Using a Heuristic Automatic Clustering Method Based on Hierarchical Clustering

  • François LaPlanteEmail author
  • Mustapha Kardouchi
  • Nabil Belacel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)


One approach to image categorization is the use of clustering algorithms to sets of images represented by various image descriptors. We propose the use of an automatic clustering algorithm to categorize an image-set represented by color moments. Using this clustering algorithm based on hierarchical clustering, this approach produced adequate results with only minimal user input when applied to a restricted image-set.


Image classification Image processing Clustering 



We gratefully acknowledge the support from NBIF’s (RAI 2012-047) New Brunswick Innovation Funding granted to Dr. Nabil Belacel.


  1. Bouachir, W., Kardouchi, M., Belacel, N.: Fuzzy indexing for bag of features scene categorization. In: 5th International Symposium on I/V Communications and Mobile Network (ISVC), 2010, pp. 1–4 (2010)Google Scholar
  2. Deng, Y., Manjunath, B., Kenney, C., Moore, M.S., Shin, H.: An efficient color representation for image retrieval. IEEE Trans. Image Process. 10(1), 140–147 (2001)zbMATHCrossRefGoogle Scholar
  3. Gan, G.: Data Clustering in C++: An Object-Oriented Approach. Chapman and Hall/CRC, Boca Raton (2011)CrossRefGoogle Scholar
  4. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  5. Kaufman, L.R., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)CrossRefGoogle Scholar
  6. Kwon, S.: Cluster validity index for fuzzy clustering. Electron. Lett. 34(22), 2176–2177 (1998)CrossRefGoogle Scholar
  7. LaPlante, F., Belacel, N., Kardouchi, M.: A hierarchical clustering heuristic for automatic clustering. In: Proceedings of the 6th International Conference on Agents and Artificial Intelligence, pp. 201–210 (2014)Google Scholar
  8. MacNaughton-Smith, P.: Dissimilarity analysis: a new technique of hierarchical sub-division. Nature 202, 1034–1035 (1964)CrossRefGoogle Scholar
  9. Nayar, S.K., Nene, S.A., Murase, H.: Columbia object image library (coil 100). Department of Computer Science, Columbia University, Technical report, CUCS-006-96 (1996)Google Scholar
  10. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recogn. 37(3), 487–501 (2004)zbMATHCrossRefGoogle Scholar
  11. Rezaee, M.R., Lelieveldt, B., Reiber, J.: A new clustervalidity index for the fuzzy c-mean. Pattern Recogn. Lett. 19(34), 237–246 (1998)zbMATHCrossRefGoogle Scholar
  12. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)zbMATHCrossRefGoogle Scholar
  13. Sathya, B., Manavalan, R.: Image segmentation by clustering methods: performance analysis. Int. J. Comput. Appl. 29(11), 27–32 (2011)Google Scholar
  14. Stricker, M.A., Orengo, M.: Similarity of color images. In: Proceedings of the SPIE, vol. 2420, pp. 381–392 (1995)Google Scholar
  15. Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.-J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)zbMATHCrossRefGoogle Scholar
  16. Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • François LaPlante
    • 1
    Email author
  • Mustapha Kardouchi
    • 1
  • Nabil Belacel
    • 2
  1. 1.Université de MonctonMonctonCanada
  2. 2.National Research Council-Information and Communication TechnologiesMonctonCanada

Personalised recommendations