Adaptive Weighted Neighbors Lossless Image Coding

  • AbdulWahab Kabani
  • Mahmoud R. El-SakkaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)


Adaptive Weighted Neighbors Lossless Image Coding AWN is a symmetric lossless image compression algorithm. AWN makes two initial predictions, creates a weighted combination of the initial predictions before adjusting the prediction to end up with the final prediction. In order to achieve more compression, we encode the error in multiple bins depending on the expected error magnitude. Also, instead of encoding the signed error, the algorithm attempts to guess the sign and encodes the error magnitude and whether guessing the sign was successful or not.


Image compression Lossless compression Context modeling Adaptive prediction Entropy coding 



This research is partially funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). This support is greatly appreciated.


  1. 1.
    Cleary, J.G., Witten, I.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)CrossRefGoogle Scholar
  2. 2.
    Cutler, C.C.: Cutler (July 29 1952), uS Patent 2,605,361Google Scholar
  3. 3.
    Huffman, D.A., et al.: A method for the construction of minimum redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)CrossRefGoogle Scholar
  4. 4.
    Kabani, A., El-Sakka, M.R.: Weighted ratio-based adaptive lossless image coding. In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6. IEEE (2014)Google Scholar
  5. 5.
    Salomon, D.: Data Compression: The Complete Reference. Springer, New York (2004)Google Scholar
  6. 6.
    Salomon, D., Motta, G.: Handbook of Data Compression. Springer Science & Business Media, London (2009)Google Scholar
  7. 7.
    Sayood, K.: Introduction to Data Compression. Newnes, Amsterdam (2012)Google Scholar
  8. 8.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: The loco-i lossless image compression algorithm: principles and standardization into jpeg-ls. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)CrossRefGoogle Scholar
  9. 9.
    Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)CrossRefGoogle Scholar
  10. 10.
    Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 45(4), 437–444 (1997)CrossRefGoogle Scholar
  11. 11.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of Western OntarioLondonCanada

Personalised recommendations