Attributed Relational Graph-Based Learning of Object Models for Object Segmentation

  • Nasreen Akter
  • Iker GondraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)


In object recognition accurate segmentation of a particular object of interest (OOI) is critical. The OOI usually consists of a set of homogeneous regions with spatial relations among them. Thus, class-specific knowledge on the visual appearance and spatial arrangement of the regions can be useful in discriminating among objects from different classes. In this paper, we propose the use of the Attributed Relational Graph (ARG)-based formalism as a means of representing both visual and spatial information in a single structure. In the proposed framework, a training set of images, each of which contains an instance of the OOI, is given. Afterwards, each image is over-segmented into a set of visually homogeneous regions and the corresponding ARG is constructed. Given such graph representations, OOI model learning reduces to a subgraph matching problem.


  1. 1.
    Alam, F., Gondra, I.: A Bayesian network-based tunable image segmentation algorithm for object recognition. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16 (2011)Google Scholar
  2. 2.
    Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1485–1490 (2005)CrossRefGoogle Scholar
  3. 3.
    Bhanu, B., Lee, S., Ming, J.C.: Adaptive image segmentation using a genetic algorithm. IEEE Trans. Syst. Man Cybern. 25(12), 1543–1567 (1995)CrossRefGoogle Scholar
  4. 4.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  5. 5.
    Fahad, A., Morris, T.: A faster graph-based segmentation algorithm with statistical region merge. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 286–293. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  6. 6.
    Gondra, I., Alam, F.I.: Learning-based object segmentation using regional spatial templates and visual features. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 397–406. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Gondra, I., Xu, T.: A multiple instance learning based framework for semantic image segmentation. Multimedia Tools Appl. 48(2), 339–365 (2010)CrossRefGoogle Scholar
  8. 8.
    Gondra, I., Xu, T., Chiu, D.K.Y., Cormier, M.: Object segmentation through multiple instance learning. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 568–577. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, pp. 570–576. MIT Press, Cambridge (1998)Google Scholar
  10. 10.
    Noma, A., Graciano, A.B.V., Cesar, J.R.M., Consularo, L.A., Bloch, I.: Interactive image segmentation by matching attributed relational graphs. Pattern Recogn. 45(3), 1159–1179 (2012)CrossRefGoogle Scholar
  11. 11.
    Peng, J., Bhanu, B.: Closed-loop object recognition using reinforcement learning. IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 139–154 (1998)CrossRefGoogle Scholar
  12. 12.
    Qi, Z., Xu, Y., Wang, L., Song, Y.: Online multiple instance boosting for object detection. Neurocomputing 74(10), 1769–1775 (2011)CrossRefGoogle Scholar
  13. 13.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  14. 14.
    Tsai, W.H., Fu, K.S.: Error-correcting isomorphisms of attributed relational graphs for pattern analysis. IEEE Trans. Syst. Man Cybern. 9(12), 757–768 (1979)zbMATHCrossRefGoogle Scholar
  15. 15.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)CrossRefGoogle Scholar
  16. 16.
    Viola, P.A., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. Adv. Neural Inf. Process.Syst. 18, 1417–1424 (2005)Google Scholar
  17. 17.
    Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)CrossRefGoogle Scholar
  18. 18.
    Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-i.i.d. samples. In: Proceedings of International Conference on Machine Learning, pp. 1249–1256 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics and Computer ScienceSt. Francis Xavier UniversityAntigonishCanada

Personalised recommendations