Skip to main content

Attributed Relational Graph-Based Learning of Object Models for Object Segmentation

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9164))

Included in the following conference series:

  • 1904 Accesses

Abstract

In object recognition accurate segmentation of a particular object of interest (OOI) is critical. The OOI usually consists of a set of homogeneous regions with spatial relations among them. Thus, class-specific knowledge on the visual appearance and spatial arrangement of the regions can be useful in discriminating among objects from different classes. In this paper, we propose the use of the Attributed Relational Graph (ARG)-based formalism as a means of representing both visual and spatial information in a single structure. In the proposed framework, a training set of images, each of which contains an instance of the OOI, is given. Afterwards, each image is over-segmented into a set of visually homogeneous regions and the corresponding ARG is constructed. Given such graph representations, OOI model learning reduces to a subgraph matching problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam, F., Gondra, I.: A Bayesian network-based tunable image segmentation algorithm for object recognition. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16 (2011)

    Google Scholar 

  2. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1485–1490 (2005)

    Article  Google Scholar 

  3. Bhanu, B., Lee, S., Ming, J.C.: Adaptive image segmentation using a genetic algorithm. IEEE Trans. Syst. Man Cybern. 25(12), 1543–1567 (1995)

    Article  Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  5. Fahad, A., Morris, T.: A faster graph-based segmentation algorithm with statistical region merge. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 286–293. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Gondra, I., Alam, F.I.: Learning-based object segmentation using regional spatial templates and visual features. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 397–406. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Gondra, I., Xu, T.: A multiple instance learning based framework for semantic image segmentation. Multimedia Tools Appl. 48(2), 339–365 (2010)

    Article  Google Scholar 

  8. Gondra, I., Xu, T., Chiu, D.K.Y., Cormier, M.: Object segmentation through multiple instance learning. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 568–577. Springer, Heidelberg (2014)

    Google Scholar 

  9. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, pp. 570–576. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Noma, A., Graciano, A.B.V., Cesar, J.R.M., Consularo, L.A., Bloch, I.: Interactive image segmentation by matching attributed relational graphs. Pattern Recogn. 45(3), 1159–1179 (2012)

    Article  Google Scholar 

  11. Peng, J., Bhanu, B.: Closed-loop object recognition using reinforcement learning. IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 139–154 (1998)

    Article  Google Scholar 

  12. Qi, Z., Xu, Y., Wang, L., Song, Y.: Online multiple instance boosting for object detection. Neurocomputing 74(10), 1769–1775 (2011)

    Article  Google Scholar 

  13. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  14. Tsai, W.H., Fu, K.S.: Error-correcting isomorphisms of attributed relational graphs for pattern analysis. IEEE Trans. Syst. Man Cybern. 9(12), 757–768 (1979)

    Article  MATH  Google Scholar 

  15. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  16. Viola, P.A., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. Adv. Neural Inf. Process.Syst. 18, 1417–1424 (2005)

    Google Scholar 

  17. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  18. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-i.i.d. samples. In: Proceedings of International Conference on Machine Learning, pp. 1249–1256 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iker Gondra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Akter, N., Gondra, I. (2015). Attributed Relational Graph-Based Learning of Object Models for Object Segmentation. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20801-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20800-8

  • Online ISBN: 978-3-319-20801-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics