Skip to main content

Recognition Units

  • Chapter
  • 1430 Accesses

Abstract

Recognition units are the key functional units of molecular sensors that are responsible for selective target recognition in the proper range of target concentrations. Multi-point non-covalent interactions with the target with desired affinity allow providing selective target binding from a mixture of different and sometimes closely related compounds. In this Chapter we discuss different binding units and the principles of their design, construction and performance. They range from small coordination compounds targeting small molecules and ions to macromolecules such as enzyme substrates, proteins, nucleic acids, macromolecular assemblies or even the living cells. Most versatile and efficient of them are the antibodies and their short fragments and nucleic acid aptamers. Different ligand binding proteins are efficient addressing specific targets, and peptide nucleic acids became the basis of new technologies of DNA detection. The readier is requested to perform several tasks and respond to several questions at the end of this Chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al Attar HA, Norden J, O‘Brien S, Monkman AP (2008) Improved single nucleotide polymorphisms detection using conjugated polymer/surfactant system and peptide nucleic acid. Biosens Bioelectron 23(10):1466–1472

    Google Scholar 

  • Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O‘Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180

    Article  CAS  PubMed  Google Scholar 

  • Al-Hassan KA, Khanfer MF (1998) Fluorescence probes for cyclodextrin interiors. J Fluoresc 8(2):139–152

    Article  CAS  Google Scholar 

  • Azzazy HM, Highsmith WE Jr (2002) Phage display technology: clinical applications and recent innovations. Clin Biochem 35(6):425–445

    Article  CAS  PubMed  Google Scholar 

  • Badjic JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Multivalency and cooperativity in supramolecular chemistry. Acc Chem Res 38(9):723–732

    Article  CAS  PubMed  Google Scholar 

  • Baker ES, Hong JW, Gaylord BS, Bazan GC, Bowers MT (2006) PNA/dsDNA complexes: site specific binding and dsDNA biosensor applications. J Am Chem Soc 128(26):8484–8492

    Article  CAS  PubMed  Google Scholar 

  • Balabai N, Linton B, Napper A, Priyadarshy S, Sukharevsky AP, Waldeck DH (1998) Orientational dynamics of beta-cyclodextrin inclusion complexes. J Phys Chem B 102(48):9617–9624

    Article  CAS  Google Scholar 

  • Barthe P, Cohen-Gonsaud M, Aldrian-Herrada G, Chavanieu A, Labesse G, Roumestand C (2004) Design of an amphipathic alpha-helical hairpin peptide. C R Chim 7(3–4):249–252

    Article  CAS  Google Scholar 

  • Benhar I (2007) Design of synthetic antibody libraries. Expert Opin Biol Ther 7(5):763–779

    Article  CAS  PubMed  Google Scholar 

  • Bethge L, Jarikote DV, Seitz O (2008) New cyanine dyes as base surrogates in PNA: forced intercalation probes (FIT-probes) for homogeneous SNP detection. Bioorg Med Chem 16(1):114–125

    Article  CAS  PubMed  Google Scholar 

  • Biedermann F, Elmalem E, Ghosh I, Nau WM, Scherman OA (2012) Strongly fluorescent, switchable perylene bis(diimide) host-guest complexes with cucurbit[8]uril in water. Angew Chem Int Ed Engl. doi:10.1002/anie.201205393

    PubMed  Google Scholar 

  • Binz HK, Pluckthun A (2005) Engineered proteins as specific binding reagents. Curr Opin Biotechnol 16(4):459–469

    Article  CAS  PubMed  Google Scholar 

  • Binz HK, Amstutz P, Pluckthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23(10):1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Bishop KJ, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self‐assembly. Small 5(14):1600–1630

    Article  CAS  PubMed  Google Scholar 

  • Boersma YL, Plückthun A (2011) DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol 22(6):849–857

    Article  CAS  PubMed  Google Scholar 

  • Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98(5):1997–2011

    Article  CAS  PubMed  Google Scholar 

  • Brune M, Hunter JL, Corrie JET, Webb MR (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33:8262–8271

    Article  CAS  PubMed  Google Scholar 

  • Butler RS, Myers AK, Bellarmine P, Abboud KA, Castellano RK (2007) Highly fluorescent donor-acceptor purines. J Mater Chem 17(19):1863–1865

    Article  CAS  Google Scholar 

  • Casadei J, Powell MJ, Kenten JH (1990) Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector. Proc Natl Acad Sci U S A 87(6):2047–2051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen CT, Huang WP (2002) A highly selective fluorescent chemosensor for lead ions. J Am Chem Soc 124(22):6246–6247

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski MJ, Buhler E, Candau J, Lehn JM (2014) Multivalency by self‐assembly: binding of concanavalin A to metallosupramolecular architectures decorated with Multiple Carbohydrate Groups. Chemistry 20(23):6960–6977

    Article  CAS  PubMed  Google Scholar 

  • Choulier L, Enander K (2010) Environmentally sensitive fluorescent sensors based on synthetic peptides. Sensors 10(4):3126–3144

    Google Scholar 

  • Choulier L, Shvadchak VV, Naidoo A, Klymchenko AS, Mely Y, Altschuh D (2010) A peptide-based fluorescent ratiometric sensor for quantitative detection of proteins. Anal Biochem 401(2):188–195

    Google Scholar 

  • Collett JR, Cho EJ, Ellington AD (2005) Production and processing of aptamer microarrays. Methods 37(1):4–15

    Article  CAS  PubMed  Google Scholar 

  • Cox WG, Singer VL (2004) Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling. Biotechniques 36(1):114–122

    CAS  PubMed  Google Scholar 

  • de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Sci 11(11):2655–2675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  • Demchenko AP (2001a) Concepts and misconcepts in the analysis of simple kinetics of protein folding. Curr Protein Pept Sci 2(1):73–98

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2001b) Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit 14(1):42–61

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP, Chinarov VA (1999) Tolerance of protein structures to the changes of amino acid sequences and their interactions. The nature of the folding code. Protein Pept Lett 6(3):115–129

    CAS  Google Scholar 

  • Descalzo AB, Somoza C, Moreno-Bondi MC, Orellana G (2013) Luminescent core–shell imprinted nanoparticles engineered for targeted förster resonance energy transfer-based sensing. Anal Chem 85(11):5316–5320

    Article  CAS  PubMed  Google Scholar 

  • Douhal A (2004) Ultrafast guest dynamics in cyclodextrin nanocavities. Chem Rev 104(4):1955–1976

    Article  CAS  PubMed  Google Scholar 

  • Dsouza RN, Pischel U, Nau WM (2011) Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev 111(12):7941–7980

    Google Scholar 

  • Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struct Biol 14(4):495–504

    Article  CAS  PubMed  Google Scholar 

  • Edwards BM, Barash SC, Main SH, Choi GH, Minter R, Ullrich S, Williams E, Du Fou L, Wilton J, Albert VR, Ruben SM, Vaughan TJ (2003) The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol 334(1):103–118

    Article  CAS  PubMed  Google Scholar 

  • Eklund M, Axelsson L, Uhlen M, Nygren PA (2002) Anti-idiotypic protein domains selected from protein A-based affibody libraries. Proteins Struct Funct Genet 48(3):454–462

    Article  CAS  PubMed  Google Scholar 

  • Enander K, Dolphin GT, Andersson LK, Liedberg B, Lundstrom I, Baltzer L (2002) Designed, folded polypeptide scaffolds that combine key biosensing events of recognition and reporting. J Org Chem 67(9):3120–3123

    Article  CAS  PubMed  Google Scholar 

  • Enander K, Dolphin GT, Baltzer L (2004a) Designed, functionalized helix-loop-helix motifs that bind human carbonic anhydrase II: a new class of synthetic receptor molecules. J Am Chem Soc 126(14):4464–4465

    Article  CAS  PubMed  Google Scholar 

  • Enander K, Dolphin GT, Liedberg B, Lundstrom I, Baltzer L (2004b) A versatile polypeptide platform for integrated recognition and reporting: affinity arrays for protein-ligand interaction analysis. Chemistry 10(10):2375–2385

    Article  CAS  PubMed  Google Scholar 

  • Enander K, Choulier L, Olsson AL, Yushchenko DA, Kanmert D, Klymchenko AS, Demchenko AP, Mely Y, Altschuh D (2008) A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte. Bioconjug Chem 19(9):1864–1870

    Article  CAS  PubMed  Google Scholar 

  • Engfeldt T, Renberg B, Brumer H, Nygren PA, Karlstrom AE (2005) Chemical synthesis of triple-labelled three-helix bundle binding proteins for specific fluorescent detection of unlabelled protein. Chembiochem 6(6):1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed 51(42):10472–10498

    Article  CAS  Google Scholar 

  • Flores S, Echols N, Milburn D, Hespenheide B, Keating K, Lu J, Wells S, Yu EZ, Thorpe M, Gerstein M (2006) The database of macromolecular motions: new features added at the decade mark. Nucleic Acids Res 34:D296–D301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta Protein Struct Mol Enzymol 1482(1–2):9–24

    Article  CAS  Google Scholar 

  • Fonin AV, Stepanenko OV, Povarova OI, Volova CA, Philippova EM, Bublikov GS, Kuznetsova IM, Demchenko AP, Turoverov KK (2014) Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ 2:e275

    Article  PubMed Central  PubMed  Google Scholar 

  • Gellman SH, Woolfson DN (2002) Mini-proteins Trp the light fantastic. Nat Struct Biol 9(6):408–410

    Article  CAS  PubMed  Google Scholar 

  • Gilardi G, Zhou LQ, Hibbert L, Cass AEG (1994) Engineering the maltose-binding protein for reagentless fluorescence sensing. Anal Chem 66(21):3840–3847

    Article  CAS  PubMed  Google Scholar 

  • Glasner ME, Gerlt JA, Babbitt PC (2007) Mechanisms of protein evolution and their application to protein engineering. Adv Enzymol Relat Areas Mol Biol 75:193–239, xii–xiii

    CAS  PubMed  Google Scholar 

  • Gomara MJ, Haro I (2007) Synthetic peptides for the immunodiagnosis of human diseases. Curr Med Chem 14(5):531–546

    Article  CAS  PubMed  Google Scholar 

  • Goodchild S, Love T, Hopkins N, Mayers C (2006) Engineering antibodies for biosensor technologies. Adv Appl Microbiol 58:185–226

    Google Scholar 

  • Gopinath SCB (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182

    Article  CAS  PubMed  Google Scholar 

  • Gopinath SC, Tang T-H, Citartan M, Chen Y, Lakshmipriya T (2014) Current aspects in immunosensors. Biosens Bioelectron 57:292–302

    Article  CAS  PubMed  Google Scholar 

  • Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336(1):263–273

    Article  CAS  PubMed  Google Scholar 

  • Guthrie JW, Hamula CLA, Zhang HQ, Le XC (2006) Assays for cytokines using aptamers. Methods 38(4):324–330

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Kameshima N, Szymanska A, Wegner K, Lankiewicz L, Shinohara H, Taki M, Sisido M (2005) Position-specific incorporation of a highly photodurable and blue-laser excitable fluorescent amino acid into proteins for fluorescence sensing. Bioorg Med Chem 13(10):3379–3384

    Article  CAS  PubMed  Google Scholar 

  • Hamula CLA, Guthrie JW, Zhang HQ, Li XF, Le XC (2006) Selection and analytical applications of aptamers. TrAC Trends Anal Chem 25(7):681–691

    Article  CAS  Google Scholar 

  • Haupt K, Mosbach K (1999) Molecularly imprinted polymers in chemical and biological sensing. Biochem Soc Trans 27(2):344–350

    Article  CAS  PubMed  Google Scholar 

  • Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100(7):2495–2504

    Article  CAS  PubMed  Google Scholar 

  • Hazra P, Chakrabarty D, Chakraborty A, Sarkar N (2004) Intramolecular charge transfer and solvation dynamics of Nile Red in the nanocavity of cyclodextrins. Chem Phys Lett 388(1–3):150–157

    Article  CAS  Google Scholar 

  • Hermann T, Patel DJ (2000) Biochemistry – adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  CAS  PubMed  Google Scholar 

  • Hesselberth JR, Miller D, Robertus J, Ellington AD (2000) In vitro selection of RNA molecules that inhibit the activity of ricin A-chain. J Biol Chem 275(7):4937–4942

    Article  CAS  PubMed  Google Scholar 

  • Heyduk E, Heyduk T (2005) Nucleic acid-based fluorescence sensors for detecting proteins. Anal Chem 77(4):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276(52):48644–48654

    Article  CAS  PubMed  Google Scholar 

  • Hillberg AL, Brain KR, Allender CJ (2005) Molecular imprinted polymer sensors: implications for therapeutics. Adv Drug Deliv Rev 57(12):1875–1889

    CAS  PubMed  Google Scholar 

  • Hossain MA, Mihara H, Ueno A (2003) Fluorescence resonance energy transfer in a novel cyclodextrin-peptide conjugate for detecting steroid molecules. Bioorg Med Chem Lett 13(24):4305–4308

    Article  CAS  PubMed  Google Scholar 

  • Hosse RJ, Rothe A, Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Protein Sci 15(1):14–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt CE, Ansell RJ (2006) Use of fluorescence shift and fluorescence anisotropy to evaluate the re-binding of template to (S)-propranolol imprinted polymers. Analyst 131(5):678–683

    Article  CAS  PubMed  Google Scholar 

  • Hust M, Dubel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Jennings K, Diamond D (2001) Enantioselective molecular sensing of aromatic amines using tetra-(S)-di-2-naphthylprolinol calix[4]arene. Analyst 126(7):1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Jespers L, Bonnert TP, Winter G (2004) Selection of optical biosensors from chemisynthetic antibody libraries. Protein Eng Des Sel 17(10):709–713

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri S, Rajendran M, Ellington AD (2000) In vitro selection of signaling aptamers. Nat Biotechnol 18(12):1293–1297

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M (2006) Control of the optical properties of quantum dots by surface coating with calix n arene carboxylic acids. J Am Chem Soc 128(29):9288–9289

    Article  CAS  PubMed  Google Scholar 

  • Joseph R, Rao CP (2011) Ion and molecular recognition by lower rim 1, 3-di-conjugates of calix [4] arene as receptors. Chem Rev 111(8):4658–4702

    Article  CAS  PubMed  Google Scholar 

  • Kachkovskiy GO, Shandura MP, Drapaylo AB, Slominskii JL, Tolmachev OI, Kalchenko VI (2006) New calix[4]arene based hydroxystyryl cyanine dyes. J Inclusion Phenom Macrocyclic Chem 56(3–4):315–321

    Article  CAS  Google Scholar 

  • Katilius E, Katiliene Z, Woodbury NW (2006) Signaling aptamers created using fluorescent nucleotide analogues. Anal Chem 78(18):6484–6489

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Pickup JC (2013) Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine. Biochem Biophys Res Commun 438(3):488–492

    Article  CAS  PubMed  Google Scholar 

  • Kodadek T (2002) Development of protein-detecting microarrays and related devices. Trends Biochem Sci 27(6):295–300

    Article  CAS  PubMed  Google Scholar 

  • Korndorfer IP, Schlehuber S, Skerra A (2003) Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J Mol Biol 330(2):385–396

    Article  CAS  PubMed  Google Scholar 

  • Kubinyi M, Vidoczy T, Varga O, Nagy K, Bitter I (2005) Absorption and fluorescence spectroscopic study on complexation of oxazine 1 dye by calix 8 arenesulfonate. Appl Spectrosc 59(1):134–139

    Article  CAS  PubMed  Google Scholar 

  • Kulagina NV, Shaffer KM, Anderson GP, Ligler FS, Taitt CR (2006) Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal Chim Acta 575(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  • Leray I, Lefevre JP, Delouis JF, Delaire J, Valeur B (2001) Synthesis and photophysical and cation-binding properties of mono- and tetranaphthylcalix 4 arenes as highly sensitive and selective fluorescent sensors for sodium. Chemistry 7(21):4590–4598

    Article  CAS  PubMed  Google Scholar 

  • Levin AM, Weiss GA (2006) Optimizing the affinity and specificity of proteins with molecular display. Mol Biosyst 2(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Li JJ, Fang X, Tan W (2002) Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun 292(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Li J, Kendig CE, Nesterov EE (2007) Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials. J Am Chem Soc 129(51):15911–15918

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Bazan GC (2005) Methods for strand-specific DNA detection with cationic conjugated polymers suitable for incorporation into DNA chips and microarrays. Proc Natl Acad Sci U S A 102(3):589–593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Song Y, Chen Y, Li XQ, Ding F, Zhong RQ (2004) Biquinolino-modified beta-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids. Chemistry 10(15):3685–3696

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liang P, Chen Y, Zhao YL, Ding F, Yu A (2005) Spectrophotometric study of fluorescence sensing and selective binding of biochemical substrates by 2,2′-bridged biso(beta-cyclodextrin) and its water-soluble fullerene conjugate. J Phys Chem B 109(49):23739–23744

    Article  CAS  PubMed  Google Scholar 

  • Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423(6936):185–190

    Article  CAS  PubMed  Google Scholar 

  • MacKay S, Wishart D, Xing JZ, Chen J (2014) Developing trends in aptamer-based biosensor devices and their applications. IEEE Trans Biomed Circuits Syst 8(1):4–14

    Google Scholar 

  • Makabe A, Kinoshita K, Narita M, Hamada F (2002) Guest-responsive fluorescence variations of gamma-cyclodextrins labeled with hetero-functionalized pyrene and tosyl moieties. Anal Sci 18(2):119–124

    Article  CAS  PubMed  Google Scholar 

  • Mammen M, Choi S-K, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37(20):2754–2794

    Article  Google Scholar 

  • Martinez-Veracoechea FJ, Frenkel D (2011) Designing super selectivity in multivalent nano-particle binding. Proc Natl Acad Sci 108(27):10963–10968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marvin JS, Hellinga HW (1998) Engineering biosensors by introducing fluorescent allosteric signal transducers: construction of a novel glucose sensor. J Am Chem Soc 120(1):7–11

    Article  CAS  Google Scholar 

  • Marvin JS, Hellinga HW (2001a) Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci U S A 98(9):4955–4960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marvin JS, Hellinga HW (2001b) Manipulation of ligand binding affinity by exploitation of conformational coupling. Nat Struct Biol 8(9):795–798

    Article  CAS  PubMed  Google Scholar 

  • Marvin JS, Corcoran EE, Hattangadi NA, Zhang JV, Gere SA, Hellinga HW (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc Natl Acad Sci U S A 94(9):4366–4371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319(2):244–250

    Article  CAS  PubMed  Google Scholar 

  • McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100(7):2537–2574

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Goldman ER, Lassman ME, Mauro JM (2003) A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconjug Chem 14(5):909–918

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Knapp EW (2014) Database of protein complexes with multivalent binding ability: bival‐bind. Proteins Struct Funct Bioinf 82(5):744–751

    Article  CAS  Google Scholar 

  • Miao Z, Ren G, Liu H, Jiang L, Cheng Z (2010) Cy5.5-labeled Affibody molecule for near-infrared fluorescent optical imaging of epidermal growth factor receptor positive tumors. J Biomed Opt 15(3):036007

    Article  PubMed  CAS  Google Scholar 

  • Mohanty J, Bhasikuttan AC, Nau WM, Pal H (2006) Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pK(a) shifts and binding affinities for cucurbit 7 uril and beta-cyclodextrin. J Phys Chem B 110(10):5132–5138

    Article  CAS  PubMed  Google Scholar 

  • Mondal SK, Sahu K, Ghosh S, Sen P, Bhattacharyya K (2006) Excited-state proton transfer from pyranine to acetate in gamma-cyclodextrin and hydroxypropyl gamma-cyclodextrin. J Phys Chem A 110(51):13646–13652

    Article  CAS  PubMed  Google Scholar 

  • Mosbach K, Haupt K (1998) Some new developments and challenges in non-covalent molecular imprinting technology. J Mol Recognit 11(1–6):62–68

    Article  CAS  PubMed  Google Scholar 

  • Mulder A, Huskens J, Reinhoudt DN (2004) Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem 2(23):3409–3424

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74(4):277–302

    CAS  PubMed  Google Scholar 

  • Nanduri V, Kim G, Morgan MT, Ess D, Hahm BK, Kothapalli A, Valadez A, Geng T, Bhunia AK (2006) Antibody immobilization on waveguides using a flow-through system shows improved Listeria monocytogenes detection in an automated fiber optic biosensor: RAPTOR (TM). Sensors 6(8):808–822

    Article  PubMed Central  CAS  Google Scholar 

  • Nau WM, Florea M, Assaf KI (2011) Deep inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host–guest complexation. Isr J Chem 51(5–6):559–577

    Article  CAS  Google Scholar 

  • Navarro-Villoslada F, Urraca JL, Moreno-Bondi MC, Orellana G (2007) Zearalenone sensing with molecularly imprinted polymers and tailored fluorescent probes. Sens Actuators B 121(1):67–73

    Article  CAS  Google Scholar 

  • Neuweiler H, Schulz A, Vaiana AC, Smith JC, Kaul S, Wolfrum J, Sauer M (2002) Detection of individual p53-autoantibodies by using quenched peptide-based molecular probes. Angew Chem Int Ed Engl 41(24):4769–4773

    Article  CAS  PubMed  Google Scholar 

  • Ngundi MM, Kulagina NV, Anderson GP, Taitt CR (2006) Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Rev Proteomics 3(5):511–524

    Article  CAS  PubMed  Google Scholar 

  • Nishiyabu R, Kubo Y, James TD, Fossey JS (2012) Boronic acid building blocks: tools for sensing and separation. Chem Commun 47(4):1106–1123

    Article  CAS  Google Scholar 

  • Niu WZ, Jiang N, Hu YH (2007) Detection of proteins based on amino acid sequences by multiple aptamers against tripeptides. Anal Biochem 362(1):126–135

    Article  CAS  PubMed  Google Scholar 

  • Nutiu R, Li YF (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chemistry 10(8):1868–1876

    Article  CAS  PubMed  Google Scholar 

  • Nutiu R, Li YF (2005a) Aptamers with fluorescence-signaling properties. Methods 37(1):16–25

    Article  CAS  PubMed  Google Scholar 

  • Nutiu R, Li YF (2005b) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed 44(7):1061–1065

    Article  CAS  Google Scholar 

  • O’Sullivan PJ, Burke M, Soini AE, Papkovsky DB (2002) Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays. Nucleic Acids Res 30(21):e114

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogoshi T, Harada A (2008) Chemical sensors based on cyclodextrin derivatives. Sensors 8(8):4961–4982

    Article  PubMed Central  CAS  Google Scholar 

  • Oh KJ, Cash KJ, Hugenberg V, Plaxco KW (2007) Peptide beacons: a new design for polypeptide-based optical biosensors. Bioconjug Chem 18(3):607–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Organero JA, Tormo L, Sanz M, Roshal A, Douhal A (2007) Complexation effect of gamma-cyclodextrin on a hydroxyflavone derivative: formation of excluded and included anions. J Photochem Photobiol A 188(1):74–82

    Article  CAS  Google Scholar 

  • Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46(14):2366–2393

    Article  CAS  Google Scholar 

  • Ozaki H, Nishihira A, Wakabayashi M, Kuwahara M, Sawai H (2006) Biomolecular sensor based on fluorescence-labeled aptamer. Bioorg Med Chem Lett 16(16):4381–4384

    Article  CAS  PubMed  Google Scholar 

  • Pagliari S, Corradini R, Galaverna G, Sforza S, Dossena A, Montalti M, Prodi L, Zaccheroni N, Marchelli R (2004) Enantioselective fluorescence sensing of amino acids by modified cyclodextrins: role of the cavity and sensing mechanism. Chemistry 10(11):2749–2758

    Article  CAS  PubMed  Google Scholar 

  • Peczuh MW, Hamilton AD (2000) Peptide and protein recognition by designed molecules. Chem Rev 100(7):2479–2493

    Article  CAS  PubMed  Google Scholar 

  • Pflum MKH (2004) Grafting miniature DNA binding proteins. Chem Biol 11(1):3–4

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC, Khan F, Zhi Z-L, Coulter J, Birch DJ (2013) Fluorescence intensity-and lifetime-based glucose sensing using glucose/galactose-binding protein. J Diabetes Sci Technol 7(1):62–71

    Article  PubMed Central  PubMed  Google Scholar 

  • Proske D, Blank M, Buhmann R, Resch A (2005) Aptamers – basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 69(4):367–374

    Article  CAS  PubMed  Google Scholar 

  • Pu K-Y, Shi J, Cai L, Li K, Liu B (2011) Affibody-attached hyperbranched conjugated polyelectrolyte for targeted fluorescence imaging of HER2-positive cancer cell. Biomacromolecules 12(8):2966–2974

    Article  CAS  PubMed  Google Scholar 

  • Purrello R, Gurrieri S, Lauceri R (1999) Porphyrin assemblies as chemical sensors. Coord Chem Rev 192:683–706

    Article  Google Scholar 

  • Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Rathbone DL, Bains A (2005) Tools for fluorescent molecularly imprinted polymers. Biosens Bioelectron 20(7):1438–1442

    Article  CAS  PubMed  Google Scholar 

  • Raymond FR, Ho HA, Peytavi R, Bissonnette L, Boissinot M, Picard FJ, Leclerc M, Bergeron MG (2005) Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnol 5:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Renberg B, Shiroyama I, Engfeldt T, Nygren PA, Karlstrom AE (2005) Affibody protein capture microarrays: synthesis and evaluation of random and directed immobilization of affibody molecules. Anal Biochem 341(2):334–343

    Article  CAS  PubMed  Google Scholar 

  • Renberg B, Nordin J, Merca A, Uhlen M, Feldwisch J, Nygren PA, Karlstrom AE (2007) Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J Proteome Res 6(1):171–179

    Article  CAS  PubMed  Google Scholar 

  • Renard M, Belkadi L, Hugo N, England P, Altschuh D, Bedouelle H (2002) Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. J Mol Biol 318:429–42

    Google Scholar 

  • Richter A, Eggenstein E, Skerra A (2014) Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett 588(2):213–218

    Article  CAS  PubMed  Google Scholar 

  • Rodi DJ, Agoston GE, Manon R, Lapcevich R, Green SJ, Makowski L (2001) Identification of small molecule binding sites within proteins using phage display technology. Comb Chem High Throughput Screen 4(7):553–572

    Article  CAS  PubMed  Google Scholar 

  • Ronnmark J, Kampf C, Asplund A, Hoiden-Guthenberg I, Wester K, Ponten F, Uhlen M, Nygren PA (2003) Affibody-beta-galactosidase immunoconjugates produced as soluble fusion proteins in the Escherichia coli cytosol. J Immunol Methods 281(1–2):149–160

    Article  CAS  PubMed  Google Scholar 

  • Roshal AD, Grigorovich AV, Doroshenko AO, Pivovarenko VG, Demchenko AP (1999) Flavonols as metal-ion chelators: complex formation with Mg2+ and Ba2+ cations in the excited state. J Photochem Photobiol A 127(1–3):89–100

    Article  CAS  Google Scholar 

  • Sadhu KK, Bag B, Bharadwaj PK (2007) A multi-receptor fluorescence signaling system exhibiting enhancement selectively in presence of Na(I) and Tl(I) ions. J Photochem Photobiol A 185(2–3):231–238

    Article  CAS  Google Scholar 

  • Schulz GE, Schirmer RH (1979) Principles of protein structure. Springer, New York

    Book  Google Scholar 

  • Sellergren B, Andersson LI (2000) Application of imprinted synthetic polymers in binding assay development. Methods 22(1):92–106

    Article  CAS  PubMed  Google Scholar 

  • Shakeel S, Karim S, Ali A (2006) Peptide nucleic acid (PNA) – a review. J Chem Technol Biotechnol 81(6):892–899

    Article  CAS  Google Scholar 

  • Shimizu KD, Stephenson CJ (2010) Molecularly imprinted polymer sensor arrays. Curr Opin Chem Biol 14(6):743–750

    Article  CAS  PubMed  Google Scholar 

  • Sillerud LO, Larson RS (2005) Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Curr Protein Pept Sci 6(2):151–169

    Article  CAS  PubMed  Google Scholar 

  • Singh Y, Dolphin GT, Razkin J, Dumy P (2006) Synthetic peptide templates for molecular recognition: recent advances and applications. Chembiochem 7(9):1298–1314

    Article  CAS  PubMed  Google Scholar 

  • Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18(4):295–304

    Article  CAS  PubMed  Google Scholar 

  • Sliwa W, Deska M (2011) Functionalization reactions of calixarenes. Arkivoc 1:496–551

    Google Scholar 

  • Socher E, Jarikote DV, Knoll A, Roglin L, Burmeister J, Seitz O (2008) FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal Biochem 375(2):318–330

    Article  CAS  PubMed  Google Scholar 

  • Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27(2):108–117

    Article  CAS  Google Scholar 

  • Srivatsan SG, Tor Y (2007) Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 129(7):2044–2053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stadtherr K, Wolf H, Lindner P (2005) An aptamer-based protein biochip. Anal Chem 77(11):3437–3443

    Article  CAS  PubMed  Google Scholar 

  • Stephenson CJ, Shimizu KD (2007) Colorimetric and fluorometric molecularly imprinted polymer sensors and binding assays. Polym Int 56(4):482–488

    Article  CAS  Google Scholar 

  • Stojanovic MN, Kolpashchikov DM (2004) Modular aptameric sensors. J Am Chem Soc 126(30):9266–9270

    Article  CAS  PubMed  Google Scholar 

  • Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124(33):9678–9679

    Article  CAS  PubMed  Google Scholar 

  • Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123(21):4928–4931

    Article  CAS  PubMed  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1753

    Article  CAS  PubMed  Google Scholar 

  • Thodima V, Pirooznia M, Deng YP (2006) RiboaptDB: a comprehensive database of ribozymes and aptamers. BMC Bioinf 7:S6

    Article  CAS  Google Scholar 

  • Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6(5):821–824

    Article  CAS  PubMed  Google Scholar 

  • Tolosa L, Ge XD, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Anal Biochem 314(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Tombelli S, Minunni A, Mascini A (2005) Analytical applications of aptamers. Biosens Bioelectron 20(12):2424–2434

    Article  CAS  PubMed  Google Scholar 

  • Traviesa-Alvarez JM, Sanchez-Barragan I, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2007) Room temperature phosphorescence optosensing of benzo a pyrene in water using halogenated molecularly imprinted polymers. Analyst 132(3):218–223

    Article  CAS  PubMed  Google Scholar 

  • Tsou LK, Jain RK, Hamilton AD (2004) Protein surface recognition by porphyrin-based receptors. J Porphyrins Phthalocyanines 8(1–3):141–147

    Article  CAS  Google Scholar 

  • Uchiyama F, Tanaka Y, Minari Y, Toku N (2005) Designing scaffolds of peptides for phage display libraries. J Biosci Bioeng 99(5):448–456

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Dong J (2014) From fluorescence polarization to quenchbody: recent progress in fluorescent reagentless biosensors based on antibody and other binding proteins. Biochim Biophys Acta 1844(11):1951–1959

    Google Scholar 

  • Valeur B (2002) Molecular fluorescence. Wiley VCH, Weinheim

    Google Scholar 

  • Valeur B, Leray I (2007) Ion-responsive supramolecular fluorescent systems based on multichromophoric calixarenes: a review. Inorg Chim Acta 360(3):765–774

    Article  CAS  Google Scholar 

  • Vogt M, Skerra A (2004) Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. Chembiochem 5(2):191–199

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Bardelang D, Waite M, Udachin KA, Leek DM, Yu K, Ratcliffe CI, Ripmeester JA (2009) Inclusion complexes of coumarin in cucurbiturils. Org Biomol Chem 7(11):2435–2439

    Article  CAS  PubMed  Google Scholar 

  • Weiss GA, Lowman HB (2000) Anticalins versus antibodies: made-to-order binding proteins for small molecules. Chem Biol 7(8):R177–R184

    Article  CAS  PubMed  Google Scholar 

  • Wenz G, Han BH, Muller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106(3):782–817

    Article  CAS  PubMed  Google Scholar 

  • Wiederstein M, Sippl MJ (2005) Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials. J Mol Biol 345(5):1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Wosnick JH, Swager TM (2004) Enhanced fluorescence quenching in receptor-containing conjugated polymers: a calix 4 arene-containing poly(phenylene ethynylene). Chem Commun 23:2744–2745

    Article  CAS  Google Scholar 

  • Wu X, Li Z, Chen X-X, Fossey JS, James TD, Jiang Y-B (2013) Selective sensing of saccharides using simple boronic acids and their aggregates. Chem Soc Rev 42(20):8032–8048

    Article  CAS  PubMed  Google Scholar 

  • Yang RH, Chan WH, Lee AWM, Xia PF, Zhang HK, Li KA (2003a) A ratiometric fluorescent sensor for Ag-1 with high selectivity and sensitivity. J Am Chem Soc 125(10):2884–2885

    Article  CAS  PubMed  Google Scholar 

  • Yang RH, Li KA, Wang KM, Zhao FL, Li N, Liu F (2003b) Porphyrin assembly on beta-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Anal Chem 75(3):612–621

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Fan H, Gao X, Gao S, Karnati VVR, Ni W, Hooks WB, Carson J, Weston B, Wang B (2004) The first fluorescent diboronic acid sensor specific for hepatocellular carcinoma cells expressing sialyl Lewis X. Chem Biol 11(4):439–448

    Article  CAS  PubMed  Google Scholar 

  • Yesylevskyy SO, Klymchenko AS, Demchenko AP (2005) Semi-empirical study of two-color fluorescent dyes based on 3-hydroxychromone. J Mol Struct THEOCHEM 755(1–3):229–239

    Article  CAS  Google Scholar 

  • Yesylevskyy SO, Kharkyanen VN, Demchenko AP (2006) The change of protein intradomain mobility on ligand binding: is it a commonly observed phenomenon? Biophys J 91(8):3002–3013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584(1):112–121

    Article  CAS  PubMed  Google Scholar 

  • Zahnd C, Amstutz P, Pluckthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4(3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Zeytun A, Jeromin A, Scalettar BA, Waldo GS, Bradbury AR (2003) Retraction: fluorobodies combine GFP fluorescence with the binding characteristics of antibodies. Nat Biotechnol 21(12):1473–1479

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Yan X, Huang F, Niu Z, Gibson HW (2014) Stimuli-responsive host–guest systems based on the recognition of cryptands by organic guests. Acc Chem Res 47(14):1995–2005

    Google Scholar 

  • Zhao Q, Cheng L (2013) Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules. Anal Bioanal Chem 405(25):8233–8239

    Article  CAS  PubMed  Google Scholar 

  • Zheng GX, Shao Y, Xu B (2006) Synthesis and characterization of polyaniline coated gold nanoparticle and its primary application. Acta Chim Sin 64(8):733–737

    CAS  Google Scholar 

  • Zhou H, Baldini L, Hong J, Wilson AJ, Hamilton AD (2006) Pattern recognition of proteins based on an array of functionalized porphyrins. J Am Chem Soc 128(7):2421–2425

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2015). Recognition Units. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-20780-3_7

Download citation

Publish with us

Policies and ethics