Skip to main content
  • 1433 Accesses

Abstract

Quantitative measures are highly needed in fluorescence sensing. In this Chapter the reader finds discussion on parameters that have to be optimized in every sensor, such as selectivity, sensitivity and limit of detection. Concentrating on reversible binding, in which the mass action law is observed, the methods of determining the binding constants and modeling the ligand binding isotherms are presented. Kinetics of target binding and its influence on the results of analyte determination are discussed. Focusing on fluorescence sensing, linear and intensity-weighted formats are distinguished and analyzed. At the end of this Chapter the reader finds the Section “Sensing and thinking” with the list of questions and problems. It addresses the issue, how to provide the optimal quantitative measure of target binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker GA, Pandey S, Bright FV (2000) Extending the reach of immunoassays to optically dense specimens by using two-photon excited fluorescence polarization. Anal Chem 72(22):5748–5752

    Article  CAS  PubMed  Google Scholar 

  • Bobrovnik SA (2003) Ligand–receptor interactions: a new method for determining the binding parameters. J Biochem Biophys Methods 55(1):71–86

    Google Scholar 

  • Bobrovnik SA (2005) New capabilities in determining the binding parameters for ligand-receptor interaction. J Biochem Biophys Methods 65(1):30–44

    Google Scholar 

  • Bobrovnik SA (2007) The influence of rigid or flexible linkage between two ligands on the effective affinity and avidity for reversible interactions with bivalent receptors. J Mol Recognit 20(4):253–262

    Article  CAS  PubMed  Google Scholar 

  • Bobrovnik SA (2008) A simple and convenient approach for evaluation of the parameters of ligand–receptor interaction. Receptor blocking index and its application. J Mol Recognit 21(2):96–102

    Google Scholar 

  • Bobrovnik SA (2014) Avidity of polyreactive immunoglobulins. Ukr Biochem J 86(6):183–189

    Article  CAS  PubMed  Google Scholar 

  • Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41(3):1130–1172

    Article  CAS  PubMed  Google Scholar 

  • Carletti E, Guerra E, Alberti S (2006) The forgotten variables of DNA array hybridization. Trends Biotechnol 24(10):443–448

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2010) The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc 20(5):1099–1128

    Article  PubMed  Google Scholar 

  • Demchenko AP (2014) Practical aspects of wavelength ratiometry in the studies of intermolecular interactions. J Mol Struct 1077:51–67

    Article  CAS  Google Scholar 

  • Demidov VV, Frank-Kamenetskii MD (2004) Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem Sci 29(2):62–71

    Article  CAS  PubMed  Google Scholar 

  • Eaton BE, Gold L, Zichi DA (1995) Let’s get specific: the relationship between specificity and affinity. Chem Biol 2(10):633–638

    Article  CAS  PubMed  Google Scholar 

  • Gaugain B, Barbet J, Capelle N, Roques BP, Le Pecq JB (1978) DNA Bifunctional intercalators. 2. Fluorescence properties and DNA binding interaction of an ethidium homodimer and an acridine ethidium heterodimer. Biochemistry 17(24):5078–5088

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Kellner R, Mermet J-M, Otto M, Valcarcei M, Widmer HM (2004) Analytical chemistry. Wiley-VCH, New York

    Google Scholar 

  • Kitov PI, Bundle DR (2003) On the nature of the multivalency effect: a thermodynamic model. J Am Chem Soc 125(52):16271–16284

    Article  CAS  PubMed  Google Scholar 

  • Klenin KV, Kusnezow W, Langowski J (2005) Kinetics of protein binding in solid-phase immunoassays: theory. J Chem Phys 122(21):214715

    Article  PubMed  Google Scholar 

  • Klotz IM (1983) Ligand-receptor interactions – what we can and cannot learn from binding measurements. Trends Pharmacol Sci 4(6):253–255

    Article  CAS  Google Scholar 

  • Klotz IM, Hunston DL (1971) Properties of graphical representations of multiple classes of binding sites. Biochemistry 10(16):3065–3069

    Article  CAS  PubMed  Google Scholar 

  • Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel JD (2003) Antibody microarrays: an evaluation of production parameters. Proteomics 3(3):254–264

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer, New York

    Book  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  • Li CY, Zhang XB, Han ZX, Akermark B, Sun L, Shen GL, Yu RQ (2006) A wide pH range optical sensing system based on a sol–gel encapsulated amino-functionalized corrole. Analyst 131(3):388–393

    Article  CAS  PubMed  Google Scholar 

  • MacDougall D, Crummett WB (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52(14):2242–2249

    Article  CAS  Google Scholar 

  • Marvin JS, Corcoran EE, Hattangadi NA, Zhang JV, Gere SA, Hellinga HW (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc Natl Acad Sci U S A 94(9):4366–4371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pivovarenko VG, Klueva AV, Doroshenko AO, Demchenko AP (2000) Bands separation in fluorescence spectra of ketocyanine dyes: evidence for their complex formation with monohydric alcohols. Chem Phys Lett 325(4):389–398

    Article  CAS  Google Scholar 

  • Sadana A, Madugula A (1993) Binding kinetics of antigen by immobilized antibody or of antibody by immobilized antigen: influence of lateral interactions and variable rate coefficients. Biotechnol Prog 9(3):259–266

    Article  CAS  PubMed  Google Scholar 

  • Sanchez SA, Gratton E (2005) Lipid–protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc Chem Res 38(6):469–477

    Article  CAS  PubMed  Google Scholar 

  • Sandanaraj BS, Demont R, Thayumanavan S (2007) Generating patterns for sensing using a single receptor scaffold. J Am Chem Soc 129(12):3506–3507

    Google Scholar 

  • Sekar MM, Bloch W, St John PM (2005) Comparative study of sequence-dependent hybridization kinetics in solution and on microspheres. Nucleic Acids Res 33(1):366–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tetin SY, Hazlett TL (2000) Optical spectroscopy in studies of antibody-hapten interactions. Methods 20(3):341–361

    Article  CAS  PubMed  Google Scholar 

  • Vallée-Bélisle A, Ricci F, Plaxco KW (2012) Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range. J Am Chem Soc 134(6):2876–2879

    Article  PubMed Central  PubMed  Google Scholar 

  • Winzor DJ (2011) Allowance for antibody bivalence in the characterization of interactions by ELISA. J Mol Recognit 24(2):139–148

    Article  CAS  PubMed  Google Scholar 

  • Yang RH, Li KA, Wang KM, Zhao FL, Li N, Liu F (2003) Porphyrin assembly on beta-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Anal Chem 75(3):612–621

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2015). Theoretical Aspects. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-20780-3_2

Download citation

Publish with us

Policies and ethics