Skip to main content

Sensing the Whole Body and Clinical Diagnostics

  • Chapter
Introduction to Fluorescence Sensing
  • 1398 Accesses

Abstract

Fluorescence is the only method with high versatility that in target detection can combine ex vivo and in vivo studies. It offers the testing that is simple in performance, low invasive and applicable to point-of-care conditions. The progress in nanotechnology brings to biosensors the possibility for constructing the microarrays for high throughput parallel measurements of many analytes and for integration of biosensors with microfluidics into lab-on-a-chip devices. Moreover, a combination of disease diagnosis and treatment has become possible, which brought the appearance of a new field in research and development, the theranostics. Present Chapter focuses on these issues. It terminates with “Sensing and thinking” section on the strategy of controlling the diagnostics and treatment by light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel L, Kutschki S, Turewicz M, Eisenacher M, Stoutjesdijk J, Meyer HE, Woitalla D, May C (2014) Autoimmune profiling with protein microarrays in clinical applications. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1844(5):977–987

    Article  CAS  Google Scholar 

  • Accomasso L, Rocchietti EC, Raimondo S, Catalano F, Alberto G, Giannitti A, Minieri V, Turinetto V, Orlando L, Saviozzi S (2012) Fluorescent silica nanoparticles improve optical imaging of stem cells allowing direct discrimination between live and early-stage apoptotic cells. Small 8(20):3192–3200

    Article  CAS  PubMed  Google Scholar 

  • Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99(20):12617–12621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aslan K, Geddes CD (2006) Microwave-accelerated and metal-enhanced fluorescence myoglobin detection on silvered surfaces: potential application to myocardial infarction diagnosis. Plasmonics 1(1):53–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Badugu R, Lakowicz JR, Geddes CD (2004) Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal Chem 76(3):610–618

    Article  CAS  PubMed  Google Scholar 

  • Batta A, Panag K, Singh J (2012) Cardiac markers–role in diagnosis of myocardial infarction. Int J Cur Bio Med Sci 2(2):262–267

    Google Scholar 

  • Biffi S, Petrizza L, Rampazzo E, Voltan R, Sgarzi M, Garrovo C, Prodi L, Andolfi L, Agnoletto C, Zauli G (2014) Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging. RSC Advances 4(35):18278–18285

    Article  CAS  Google Scholar 

  • Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen W, Xu N, Xu L, Wang L, Li Z, Ma W, Zhu Y, Xu C, Kotov NA (2010) Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics). Macromol Rapid Commun 31(2):228–236

    CAS  PubMed  Google Scholar 

  • Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christenson ES, Collinson PO, deFilippi CR, Christenson RH (2014) Heart failure biomarkers at point-of-care: current utilization and future potential. Expert Rev Mol Diagn 14(2):185–197

    Article  CAS  PubMed  Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for < i > in vivo</i > imaging. Trends Biotechnol 23(12):605–613

    Article  CAS  PubMed  Google Scholar 

  • Clerc O, Greub G (2010) Routine use of point-of-care tests: usefulness and application in clinical microbiology. Clin Microbiol Infect 16(8):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Culver HR, Daily AM, Khademhosseini A, Peppas NA (2014) Intelligent recognitive systems in nanomedicine. Curr Opin Chem Eng 4:105–113

    Article  PubMed Central  PubMed  Google Scholar 

  • Dayal S, Burda C (2008) Semiconductor quantum dots as two-photon sensitizers. J Am Chem Soc 130(10):2890–2891

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP, Heldt J, Waluk J, Chou PT, Sengupta PK, Brizhik L, del Valle JC (2014) Michael Kasha: from photochemistry and flowers to spectroscopy and music. Angew Chem Int Ed 53(52):14316–14324

    Google Scholar 

  • Devarajan P (2007) Emerging biomarkers of acute kidney injury. In: Acute kidney injury. Contrib Nephrol 156:203–212

    Google Scholar 

  • Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song H (2011) Multifunctional NaYF4: Yb 3+, Er 3 + @ Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem 21(17):6193–6200

    Article  CAS  Google Scholar 

  • Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815. doi:10.1016/j.carbon.2012.02.046

    Article  CAS  Google Scholar 

  • Eisenblätter M, Ehrchen J, Varga G, Sunderkötter C, Heindel W, Roth J, Bremer C, Wall A (2009) In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages. J Nucl Med 50(10):1676–1682

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z (2013) Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9(11):1989–1997

    Article  CAS  PubMed  Google Scholar 

  • Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Dave SR (2007) Quantum dots for cancer molecular imaging. Adv Exp Med Biol 620:57–73

    Article  PubMed  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Cui Y, Chan JK, Xu C (2013) Stem cell tracking with optically active nanoparticles. Am J Nucl Med Mol Imaging 3(3):232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9(5):237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giskeødegård GF, Bertilsson H, Selnæs KM, Wright AJ, Bathen TF, Viset T, Halgunset J, Angelsen A, Gribbestad IS, Tessem M-B (2013) Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8(4), e62375

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harvey MD, Bablekis V, Banks PR, Skinner CD (2001) Utilization of the non-covalent fluorescent dye, NanoOrange, as a potential clinical diagnostic tool – Nanomolar human serum albumin quantitation. J Chromatogr B 754(2):345–356

    Article  CAS  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    Article  CAS  PubMed  Google Scholar 

  • Herbáth M, Papp K, Balogh A, Matkó J, Prechl J (2014) Exploiting fluorescence for multiplex immunoassays on protein microarrays. Methods Appl Fluoresc 2(3):032001

    Article  CAS  Google Scholar 

  • Hielscher AH (2005) Optical tomographic imaging of small animals. Curr Opin Biotechnol 16(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Yang Y, Zhang Y, Cai W (2010) Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem 10(12):1237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459(1):70–83

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (2007) Cancer biomarkers: current issues and future directions. Curr Opin Mol Ther 9(6):563–571

    CAS  PubMed  Google Scholar 

  • Jana A, Devi KSP, Maiti TK, Singh NP (2012) Perylene-3-ylmethanol: fluorescent organic nanoparticles as a single-component photoresponsive nanocarrier with real-time monitoring of anticancer drug release. J Am Chem Soc 134(18):7656–7659

    Article  CAS  PubMed  Google Scholar 

  • Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44(10):1050–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalchenko V, Neeman M, Harmelin A (2011) Whole-body imaging of hematopoietic and cancer cells using near-infrared probes. In: Advanced fluorescence reporters in chemistry and biology III. Springer Berlin Heidelberg, Springer Ser Fluoresc 10:329–346 doi:10.1007/978-3-642-18035-4

  • Kanekiyo Y, Tao H (2005) Selective glucose sensing utilizing complexation with fluorescent boronic acid on polycation. Chem Lett 34(2):196–197

    Article  CAS  Google Scholar 

  • Kartalov EP, Zhong JF, Scherer A, Quake SR, Taylor CR, Anderson WF (2006) High-throughput multi-antigen microfluidic fluorescence immunoassays. Biotechniques 40(1):85

    Article  CAS  PubMed  Google Scholar 

  • Kessler MA, Meinitzer A, Petek W, Wolfbeis OS (1997) Microalbuminuria and borderline-increase albumin excretion determined with a centrifugal analyzer and the Albumin Blue 580 fluorescence assay. Clin Chem 43(6):996–1002

    CAS  PubMed  Google Scholar 

  • Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klohs J, Rudin M (2011) In vivo imaging of vascular targets using near-infrared fluorescent probes. In: Advanced fluorescence reporters in chemistry and biology III. Springer Berlin Heidelberg, Springer Ser Fluoresc 10:313-328 doi:10.1007/978-3-642-18035-4

  • Kumar AT, Raymond SB, Bacskai BJ, Boas DA, Georgescu R, Khismatullin D, Holt RG, Castagner JL, A’amar O, Bigio IJ (2008) Comparison of frequency-domain and time-domain fluorescence lifetime tomography. Opt Lett 33(5):470–472

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuramitsu Y, Nakamura K (2006) Proteomic analysis of cancer tissues: shedding light on carcinogenesis and possible biomarkers. Proteomics 6(20):5650–5661

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Shah BP, Garfunkel E, Lee K-B (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7(3):2741–2750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, Achilefu S (2011) Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors. Bioconjug Chem 22(4):777–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN, Marquez M, Piwnica-Worms D, Smith BD (2006) Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc 128(51):16476–16477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13):3604–3613

    Article  CAS  PubMed  Google Scholar 

  • Maity AR, Saha A, Roy A, Jana NR (2013) Folic acid functionalized nanoprobes for fluorescence-, dark-field-, and dual-imaging-based selective detection of cancer cells and tissue. Chem Plus Chem 78(3):259–267

    CAS  Google Scholar 

  • McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072

    Article  PubMed  Google Scholar 

  • Min Y, Li J, Liu F, Padmanabhan P, Yeow EK, Xing B (2014) Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials. Nanomaterials 4(1):129–154

    Article  CAS  Google Scholar 

  • Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82(21):9058–9065

    Article  CAS  PubMed  Google Scholar 

  • Mueller AJ, Freeman WR, Schaller UC, Kampik A, Folberg R (2002) Complex microcirculation patterns detected by confocal indocyanine green angiography predict time to growth of small choroidal melanocytic tumors: MuSIC Report II. Ophthalmology 109(12):2207–2214

    Article  PubMed  Google Scholar 

  • Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29(5):240–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Njiojob CN, Owens EA, Narayana L, Hyun H, Choi HS, Henary M (2015) Tailored near-infrared contrast agents for image guided surgery. J Med Chem 58(6):2845–2854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    Article  CAS  PubMed  Google Scholar 

  • Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Y-k L (2014) Photoluminescent graphene nanoparticles for cancer photo-therapy and imaging. ACS Appl Mater Interfaces 6(15):12413–12421

    Google Scholar 

  • Ogilby PR (2010) Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev 39(8):3181–3209

    Article  CAS  PubMed  Google Scholar 

  • Oh KJ, Cash KJ, Hugenberg V, Plaxco KW (2007) Peptide beacons: a new design for polypeptide-based optical biosensors. Bioconjug Chem 18(3):607–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouellette AL, Li JJ, Cooper DE, Ricco AJ, Kovacs GT (2009) Evolving point-of-care diagnostics using up-converting phosphor bioanalytical systems. Anal Chem 81(9):3216–3221

    Article  CAS  PubMed  Google Scholar 

  • Palacios-Rodriguez Y, Gazarian T, Rowley M, Majluf-Cruz A, Gazarian K (2007) Collection of phage-peptide probes for HIV-1 immunodominant loop-epitope. J Microbiol Methods 68(2):225–235

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC, Khan F, Zhi Z-L, Coulter J, Birch DJ (2013) Fluorescence intensity-and lifetime-based glucose sensing using glucose/galactose-binding protein. J Diabetes Sci Technol 7(1):62–71

    Article  PubMed Central  PubMed  Google Scholar 

  • Polom K, Murawa D, Ys R, Nowaczyk P, Hünerbein M, Murawa P (2011) Current trends and emerging future of indocyanine green usage in surgery and oncology. Cancer 117(21):4812–4822

    Article  PubMed  Google Scholar 

  • Qiao Y, Tang H, Munske GR, Dutta P, Ivory CF, Dong W-J (2011) Enhanced fluorescence anisotropy assay for human cardiac troponin I and T detection. J Fluoresc 21(6):2101–2110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Uetrecht P, Bugaj JE, Achilefu SA, Dorshow RB (2000) Stabilization of the optical tracer agent indocyanine green using noncovalent interactions. Photochem Photobiol 71(3):347–350

    Article  CAS  PubMed  Google Scholar 

  • Rouhanifard SH, Nordstrøm LU, Zheng T, Wu P (2013) Chemical probing of glycans in cells and organisms. Chem Soc Rev 42(10):4284–4296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rutten M, Janes MA, Laraway B, Gregory C, Gregory K (2010) Comparison of quantum dots and CM-DiI for labeling porcine autologous bone marrow mononuclear progenitor cells. Open Stem Cell J 2:25–36

    CAS  Google Scholar 

  • Selvam S, Kundu K, Templeman KL, Murthy N, García AJ (2011) Minimally invasive, longitudinal monitoring of biomaterial-associated inflammation by fluorescence imaging. Biomaterials 32(31):7785–7792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharrna P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123:471–485

    Article  CAS  Google Scholar 

  • Shephard M, Peake M, Corso O, Shephard A, Mazzachi B, Spaeth B, Barbara J, Mathew T (2010) Assessment of the Nova StatSensor whole blood point-of-care creatinine analyzer for the measurement of kidney function in screening for chronic kidney disease. Clin Chem Lab Med 48(8):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra B (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens Actuators B 197:385–404

    Article  CAS  Google Scholar 

  • Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond) 3(4):567–578

    Google Scholar 

  • Stefflova K, Chen J, Zheng G (2007) Killer beacons for combined cancer imaging and therapy. Curr Med Chem 14(20):2110–2125

    Article  CAS  PubMed  Google Scholar 

  • Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhu X, Peng J, Li F (2013) Core–shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano 7(12):11290–11300

    Article  CAS  PubMed  Google Scholar 

  • Tan HT, Low J, Lim SG, Chung M (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276(23):6880–6904

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Ren Y, Hong B, Kang KA (2006) Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases. J Biomed Opt 11(2):021011-021011-10

    Google Scholar 

  • Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, Zhao D, Zheng G (2013) Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv Mater 25(45):6569–6574

    Article  CAS  PubMed  Google Scholar 

  • Tra VN, Dube DH (2014) Glycans in pathogenic bacteria–potential for targeted covalent therapeutics and imaging agents. Chem Commun 50(36):4659–4673

    Article  CAS  Google Scholar 

  • Tsai H-c, Doong R-a (2004) Simultaneous determination of renal clinical analytes in serum using hydrolase-and oxidase-encapsulated optical array biosensors. Anal Biochem 334(1):183–192

    Article  CAS  PubMed  Google Scholar 

  • Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10(9):507–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valanne A, Huopalahti S, Soukka T, Vainionpaa R, Lovgren T, Harma H (2005) A sensitive adenovirus immunoassay as a model for using nanoparticle label technology in virus diagnostics. J Clin Virol 33(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results. Nat Med 17(10):1315–1319

    Article  PubMed  CAS  Google Scholar 

  • van Scheltinga AGT, van Dam GM, Nagengast WB, Ntziachristos V, Hollema H, Herek JL, Schröder CP, Kosterink JG, Lub-de Hoog MN, de Vries EG (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 52(11):1778–1785

    Article  CAS  Google Scholar 

  • Vasan RS (2006) Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation 113(19):2335–2362

    Article  PubMed  Google Scholar 

  • Vashist SK (2012) Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 750:16–27

    Article  CAS  PubMed  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li C (2011) pH responsive fluorescence nanoprobe imaging of tumors by sensing the acidic microenvironment. J Mater Chem 21(40):15862–15871

    Article  CAS  Google Scholar 

  • Wang C, Sahay P (2009) Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9(10):8230–8262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, Jacques PF, Rifai N, Selhub J, Robins SJ (2006) Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 355(25):2631–2639

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao WJ, O’Donoghue MB, Tan WH (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18(2):297–301

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Cheng L, Liu Z (2011a) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Tao H, Cheng L, Liu Z (2011b) Near-infrared light induced < i > in vivo</i > photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Cheng L, Xu H, Liu Z (2012) Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33(19):4872–4881

    Article  CAS  PubMed  Google Scholar 

  • Weinstain R, Segal E, Satchi-Fainaro R, Shabat D (2010) Real-time monitoring of drug release. Chem Commun 46(4):553–555

    Article  CAS  Google Scholar 

  • White AG, Gray BD, Pak KY, Smith BD (2012) Deep-red fluorescent imaging probe for bacteria. Bioorg Med Chem Lett 22(8):2833–2836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Zhang W, Li J, Zhang Y (2013) Optical imaging of tumor microenvironment. Am J Nucl Med Mol Imaging 3(1):1

    PubMed Central  PubMed  Google Scholar 

  • Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31(11):3016–3022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM (2011) Nanoparticle-based monitoring of cell therapy. Nanotechnology 22(49):494001

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Zhou DM (2006) Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. Clin Biochem 39(8):771–780

    Article  PubMed  Google Scholar 

  • Yang M, Li L, Jiang P, Moossa A, Penman S, Hoffman RM (2003) Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci 100(24):14259–14262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaheer A, Wheat TE, Frangioni JV (2002) IRDye78 conjugates for near-infrared fluorescence imaging. Mol Imaging 1(4):354–364

    Article  CAS  PubMed  Google Scholar 

  • Zajac A, Song D, Qian W, Zhukov T (2007) Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces 58(2):309–314

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461–7467

    Article  CAS  Google Scholar 

  • Zhang W, Peng B, Tian F, Qin W, Qian X (2013) Facile preparation of well-defined hydrophilic core–shell upconversion nanoparticles for selective cell membrane glycan labeling and cancer cell imaging. Anal Chem 86(1):482–489

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A 101(42):15027–15032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev 44(6):1379–1415

    Google Scholar 

  • Zou P, Xu S, Povoski SP, Wang A, Johnson MA, Martin EW Jr, Subramaniam V, Xu R, Sun D (2009) Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol Pharm 6(2):428–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2015). Sensing the Whole Body and Clinical Diagnostics. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-20780-3_14

Download citation

Publish with us

Policies and ethics