Skip to main content
  • 2424 Accesses

Abstract

Patients with osteoporosis have high risks for vertebral and non-vertebral fractures; therefore, these patients should be adequately diagnosed and treated for prevention of fractures. It is essential to treat patients appropriately and sufficiently that the physicians must understand the mechanisms underlying osteoporosis and physiological bone homeostasis. The large population of osteoporosis is postmenopausal osteoporosis, which is categorized in primary osteoporosis. Postmenopausal osteoporosis is caused by deficiency of estrogen. Estrogen exerts its osteoprotective effects directly and indirectly to bone tissue. Also, secondary osteoporosis can be induced by various pathologic conditions, such as hyperparathyroidism, glucocorticoid treatment, and inflammatory diseases.

Clarification of the molecular basis underlying the pathophysiology of osteoporosis will open the window to develop novel therapeutic strategy for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karsenty G (2000) How many factors are required to remodel bone? Nat Med 6(9):970–971. PubMed Epub 2000/09/06. eng

    Article  CAS  PubMed  Google Scholar 

  2. Yin T, Li L (2006) The stem cell niches in bone. J Clan Invest 116(5):1195–1201. Pubmed Central PM CID: 1451221

    Article  CAS  Google Scholar 

  3. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 9(8):1137–1141. PubMed

    Article  CAS  Google Scholar 

  4. Osteoporosis prevention, diagnosis, and therapy (2000) NIH Consens Statement 17(1):1–45. PubMed

    Google Scholar 

  5. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H et al (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345(6274):442–444. PubMed Epub 1990/05/31. eng

    Article  CAS  PubMed  Google Scholar 

  6. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7):3597–3602. PubMed Central PM CID: 19881. Epub 1998/05/09. eng

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764. PubMed Epub 1997/05/30. eng

    Article  CAS  PubMed  Google Scholar 

  8. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29. PubMed eng

    Article  CAS  PubMed  Google Scholar 

  9. Nishizawa Y, Ohta H, Miura M, Inaba M, Ichimura S, Shiraki M et al (2013) Guidelines for the use of bone metabolic markers in the diagnosis and treatment of osteoporosis (2012 edition). J Bone Miner Metab 31(1):1–15. PubMed

    Article  CAS  PubMed  Google Scholar 

  10. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res Off J Am Soc Bone Miner Res 25(7):1468–1486. PubMed

    Article  Google Scholar 

  11. Rosen CJ (2005) Clinical practice. Postmenopausal osteoporosis. N Engl J Med 353(6):595–603. PubMed eng

    Article  CAS  PubMed  Google Scholar 

  12. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839. PubMed eng

    Article  CAS  PubMed  Google Scholar 

  13. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B et al (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331(16):1056–1061. PubMed Epub 1994/10/20. eng

    Article  CAS  PubMed  Google Scholar 

  14. Windahl SH, Andersson G, Gustafsson JA (2002) Elucidation of estrogen receptor function in bone withvthe use of mouse models. Trends Endocrinol Metab 13(5):195–200. PubMed

    Google Scholar 

  15. Pacifici R (2008) Estrogen deficiency, T cells and bone loss. Cell Immunol 252(1-2):68–80. PubMed Epub 2007/09/25. eng

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ et al (2006) FSH directly regulates bone mass. Cell 125(2):247–260. PubMed eng

    Article  CAS  PubMed  Google Scholar 

  17. Zaidi M, Blair HC, Iqbal J, Davies TF, Zhu LL, Zallone A et al (2009) New insights: elevated follicle-stimulating hormone and bone loss during the menopausal transition. Curr Rheumatol Rep 11(3):191–195. PubMed Epub 2009/07/17. eng

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5):811–823. PubMed eng

    Article  CAS  PubMed  Google Scholar 

  19. Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP et al (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27(3):535–545. PubMed Pubmed Central PM CID: 2241656. Epub 2008/01/26. eng

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Martin-Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS et al (2010) The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 24(2):323–334. PubMed Pubmed Central PM CID: 2817608. Epub 2010/01/08. eng

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Windahl SH, Borjesson AE, Farman HH, Engdahl C, Moverare-Skrtic S, Sjogren K et al (2013) Estrogen receptor-alpha in osteocytes is important for trabecular bone formation in male mice. Proc Natl Acad Sci U S A 110(6):2294–2299. PubMed Epub 2013/01/25. eng

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kondoh S, Inoue K, Igarashi K, Sugizaki H, Shirode-Fukuda Y, Inoue E et al (2014) Estrogen receptor alpha in osteocytes regulates trabecular bone formation in female mice. Bone 60:68–77. PubMed Pubmed Central PMCID: 3944732. Epub 2013/12/18. eng

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Abe Y, Ejima E, Fujiyama K, Kiriyama T, Ide A, Sera N et al (2000) Parathyroidectomy for primary hyperparathyroidism induces positive uncoupling and increases bone mineral density in cancellous bones. Clin Endocrinol (Oxf) 52(2):203–209. PubMed

    Article  CAS  Google Scholar 

  24. Okada Y, Tanaka Y (2004) Immune signals in the context of secondary osteoporosis. Histol Histopathol 19(3):863–866. PubMed

    CAS  PubMed  Google Scholar 

  25. Maatta JA, Buki KG, Gu G, Alanne MH, Vaaraniemi J, Liljenback H et al (2013) Inactivation of estrogen receptor alpha in bone-forming cells induces bone loss in female mice. FASEB J Off Pub Fed Am Soc Exp Biol 27(2):478–488. PubMed Epub 2012/10/18. eng

    CAS  Google Scholar 

  26. Almeida M, Iyer S, Martin-Millan M, Bartell SM, Han L, Ambrogini E et al (2013) Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 123(1):394–404. PubMed Pubmed Central PMCID: 3533305. Epub 2012/12/12. eng

    Google Scholar 

  27. Maatta JA, Buki KG, Gu G, Alanne MH, Vaaraniemi J, Liljenback H et al. (2013) Inactivation of estrogen receptor alpha in bone-forming cells induces bone loss in female mice. FASEB J 27(2):478–488. doi: 10.1096/fj.12-213587

    Google Scholar 

  28. Melville KM, Kelly NH, Khan SA, Schimenti JC, Ross FP, Main RP, et al. (2014) Female mice lacking estrogen receptor-alpha in osteoblasts have compromised bone mass and strength.J Bone Miner Res 29(2):370–379. doi:10.1002/jbmr.2082

    Google Scholar 

  29. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 424(6947):389. PubMed eng

    Article  CAS  PubMed  Google Scholar 

  30. Imai Y, Kondoh S, Kouzmenko A, Kato S (2010) Minireview: osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-alpha. Mol Endocrinol 24(5):877–885. PubMed Epub 2009/11/17. eng

    Article  CAS  PubMed  Google Scholar 

  31. Imai Y (2014) Exp Med 32(7):145–151

    Google Scholar 

  32. Nelson HD, Walker M, Zakher B, Mitchell J (2012) Sex steroid hormones and osteoporotic bone diseases. Menopausal hormone therapy for the primary prevention of chronic conditions: a systematic review to update the U.S. Preventive Services Task Force recommendations. Ann Intern Med 157(2):104–113. PubMed Epub 2012/07/13. eng

    Google Scholar 

  33. Barrett-Connor E, Cauley JA, Kulkarni PM, Sashegyi A, Cox DA, Geiger MJ (2004) Risk-benefit profile for raloxifene: 4-year data from the Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. J Bone Miner Res Off J Am Soc Bone Miner Res 19(8):1270–1275. PubMed

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuki Imai MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Imai, Y. (2016). Osteoporosis. In: Korkusuz, F. (eds) Musculoskeletal Research and Basic Science. Springer, Cham. https://doi.org/10.1007/978-3-319-20777-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20777-3_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20776-6

  • Online ISBN: 978-3-319-20777-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics