Skip to main content

Abstract

The fibrocartilaginous menisci dwell between the articular surfaces of the knee and play a crucial role in healthy joint loading. They transmit forces, absorb shock, and enhance the stability of the joint. Traumatic injury and/or degenerative changes disrupt the mechanical function of these tissues. These changes can lead to the early onset and accelerate the development of osteoarthritis. The current standard treatment is meniscectomy, or resection of the damaged portion of the meniscus, a procedure that fails to regenerate normal knee mechanics or prevent the initiation of osteoarthritic cascades. Because of the high prevalence of meniscal injury, a repair strategy is needed that restores meniscus mechanical function in orthopedic medicine. To develop strategies and technologies for replacing damaged or diseased meniscus with tissue engineered, we have to understand the biomechanics of the menisci. The meniscus tissue biomechanics depends on the meniscus anatomy, microstructure, the amount of water it contains, biochemistry, and many features. Besides the properties of a biomechanical point of normal meniscal tissue allograft, the meniscus has also important biomechanical characteristics of degenerative meniscus mechanisms besides mechanisms of injury. Undoubtedly, this information may be important for artificial meniscus study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnoczky S, Dodds J, Wickiewics T (1996) Basic science of the knee. Lippincott-Raven Publishers, Philadelphia, p 29

    Google Scholar 

  2. Fithian DC MD, Kelly MA MD, Mow VC PD (1990) Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 252:19–31

    PubMed  Google Scholar 

  3. Rath E, Richmond JC (2000) The menisci: basic science and advances in treatment. Br J Sports Med 34:252–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Voloshin AS, Wosk J (1983) Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng 5:157–161

    Article  CAS  PubMed  Google Scholar 

  5. Arnoczky SP, Adams MF, DeHaven K et al (1988) The meniscus. In: Woo SI-Y, Buckwalter I (eds) NIAM5/AAOS workshop on the injury and repair of musculoskeletal soft tissues. Am Acad Orthop Surg, Park Ridge, 487–537

    Google Scholar 

  6. Adams ME, Hukins DWL (1992) The extracellular matrix of the meniscus. Knee meniscus: basic and clinical foundations. Raven Press, New York, pp 15–28

    Google Scholar 

  7. Ghosh P, Taylor TKF (1987) The knee joint meniscus. A fibrocartilage of some distinction. Clin Orthop 224:52–63

    PubMed  Google Scholar 

  8. McDevitt CA, Weber RJ (1990) The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop 252:8–18

    PubMed  Google Scholar 

  9. Arnoczky SP, Warren RF (1982) Microvasculature of the human meniscus. Am J Sports Med 10:90–95

    Article  CAS  PubMed  Google Scholar 

  10. Fox AJ, Bedi A, Rodeo SA (2012) The basic science of human knee menisci: structure, composition, and function. Sports Health 4:340–351

    Article  PubMed Central  PubMed  Google Scholar 

  11. Arnoczky SP, Warren RF (1983) The microvasculature of the meniscus and its response to injury—an experimental study in the dog. Am J Sports Med 11:131–141

    Article  CAS  PubMed  Google Scholar 

  12. O’Connor BL (1984) The mechanoreceptor innervation of the posterior attachments of the lateral meniscus of the dog knee joint. J Anat 138(Pt 1):15–26

    PubMed Central  PubMed  Google Scholar 

  13. O’Connor BL, McConnaughey JS (1978) The structure and innervation of cat knee menisci, and their relation to a “sensory hypothesis” of meniscal function. Am J Anat 153:431–442

    Article  PubMed  Google Scholar 

  14. Bullough PG, Munuera L et al (1970) The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br 52(3):564–567

    CAS  PubMed  Google Scholar 

  15. Proctor CS, Schmidt MB et al (1989) Material properties of the normal medial bovine meniscus. J Orthop Res 7(6):771–782

    Article  CAS  PubMed  Google Scholar 

  16. Sweigart MA, Zhu CF et al (2004) Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng 32(11):1569–1579

    Article  CAS  PubMed  Google Scholar 

  17. Macnicol MF, Thomas NP (2000) The knee after menisctomy. J Bone Joint Surg 82:157–159

    Article  CAS  Google Scholar 

  18. Shrive NG, O’Connor JJ et al (1978) Load-bearing in the knee joint. Clin Orthop (131):279–287

    Google Scholar 

  19. Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints – part I: tibial surface of the knee. J Biomech Eng 105(3):216–225

    Article  CAS  PubMed  Google Scholar 

  20. Jones RS, Keene GC et al (1996) Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon) 11(5):295–300

    Article  Google Scholar 

  21. Richards CJ, Gatt CJ et al (2003) Quantitative measurement of human meniscal strain. Trans Orthop Res Soc 28:649

    Google Scholar 

  22. Campbell SE, Sanders TG, Morrison WB (2001) MR imaging of meniscal cysts: incidence, location, and clinical significance. Am J Roentgenol 177:409–413

    Article  CAS  Google Scholar 

  23. Havitcioglu H, Cecen B, Baktiroglu L, Erduran M, Karakasli A (2009) The biomechanical properties of meniscus. 14th Biomedical Engineering Meeting, at Izmir, Turkey, 20–22 May

    Google Scholar 

  24. Wilson W, van Donkelaar C, van Rietbergen B, Huiskes R (2003) Pathways of load-induced cartilage damage causing degeneration in the knee after meniscectomy. J Biomech 36:845–851

    Article  CAS  PubMed  Google Scholar 

  25. Andersson-Molina H, Karlsson H, Rockborn P (2002) Arthroscopic partial and total meniscectomy: a long-term follow-up study with matched controls. Arthroscopy 18:183–189

    Article  PubMed  Google Scholar 

  26. LeRoux MA, Setton LA (2002) Experimental biphasic fem determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124:315–321

    Article  PubMed  Google Scholar 

  27. Pen˜a E, Calvo B, Martı’nez MA, Palanca D, Doblare M (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20:498–507

    Article  Google Scholar 

  28. Messner K, Gillquist J (1993) Prosthetic replacement of the rabbit medial meniscus. J Biomed Mater Res 27:1165–1173

    Article  CAS  PubMed  Google Scholar 

  29. Berthiaume MJ, Raynauld JP, Martel-Pelletier J et al (2005) Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 64:556–563

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lange AK, Singh MAF, Smith RM et al (2007) Degenerative meniscus tears and mobility impairment in women with knee osteoarthritis. Osteoarthritis Cartilage 15:701–708

    Article  CAS  PubMed  Google Scholar 

  31. Donahue TLH, Hull ML, Rashid MM, Jacobs RC (2000) A finite element model of the human knee joint for the study of tibiofemoral contact. J Biomech Eng 124:273–280

    Google Scholar 

  32. Cook JL (2005) The current status of treatment for large meniscal defects. Clin Orthop Relat Res 435:88–95

    Article  PubMed  Google Scholar 

  33. Setton LA, Guilak F, Hsu EW, Vail TP (1999) Biomechanical factors in tissue engineered meniscal repair. Clin Orthop Relat Res 367(Suppl):S254–S272

    Article  PubMed  Google Scholar 

  34. McNicholas MJ, Rowley DI et al (2000) Total meniscectomy in adolescence. J Bone Joint Surg Br 82(2):217–221

    Article  CAS  PubMed  Google Scholar 

  35. Arnoczky SP (1999) Building a meniscus. Biologic considerations. Clin Orthop Relat Res 367(Suppl):S244–S253

    Article  PubMed  Google Scholar 

  36. van Tienen TG, Hannink G, Buma P (2009) Meniscus replacement using synthetic materials. Clin Sports Med 28:143–156

    Article  PubMed  Google Scholar 

  37. Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25:1523–1532

    Article  CAS  PubMed  Google Scholar 

  38. Walsh CJ, Goodman D, Caplan AI, Goldberg VM (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5:327–337

    Article  CAS  PubMed  Google Scholar 

  39. Bruns J, Kahrs J, Kampen J et al (1998) Autologous perichondral tissue for meniscal replacement. J Bone Joint Surg Br 80:918–923

    Article  CAS  PubMed  Google Scholar 

  40. Cook JL, Tomlinson JL, Kreeger JM, Cook CR (1999) Induction of meniscal regeneration in dogs using a novel biomaterial. Am J Sports Med 27:658–665

    CAS  PubMed  Google Scholar 

  41. Stapleton TW, Ingram J, Katta J et al (2008) Development and characterization of an acellular porcine medial meniscus for use in tissue engineering. Tissue Eng Part A 14:505–518

    Article  CAS  PubMed  Google Scholar 

  42. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    Article  CAS  PubMed  Google Scholar 

  43. Mueller SM, Schneider TO, Shortkroff S et al (1999) Alpha-smooth muscle actin and contractile behavior of bovine meniscus cells seeded in type I and type II collagen-GAG matrices. J Biomed Mater Res 45:157–166

    Article  CAS  PubMed  Google Scholar 

  44. Pabbruwe MB, Kafienah W et al (2010) Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials 31:2583–2591

    Article  CAS  PubMed  Google Scholar 

  45. Klompmaker J, Jansen HW, Veth RP, Nielsen HK et al (1993) Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clin Mater 14:1–11

    Article  CAS  PubMed  Google Scholar 

  46. Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88:753–759

    Article  CAS  PubMed  Google Scholar 

  47. Freed LE, Marquis JC, Nohria A et al (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27:11–23

    Article  CAS  PubMed  Google Scholar 

  48. Kang SW, Son SM, Lee JS et al (2006) Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A 78:659–671

    Article  PubMed  Google Scholar 

  49. Heijkants RG, van Calck RV, De Groot JH et al (2004) Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med 15:423–427

    Article  CAS  PubMed  Google Scholar 

  50. van Tienen TG, Heijkants RG, Buma P et al (2002) Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 23:1731–1738

    Article  PubMed  Google Scholar 

  51. Wood DJ, Minns RJ, Strover A (1990) Replacement of the rabbit medial meniscus with a polyester-carbon fibre bioprosthesis. Biomaterials 11:13–16

    Article  CAS  PubMed  Google Scholar 

  52. Toyonaga T, Uezaki N, Chikama H (1983) Substitute meniscus of Teflon-net for the knee joint of dogs. Clin Orthop Relat Res 179:291–297

    Article  PubMed  Google Scholar 

  53. Lebourg M, Sabater Serra R, Más Estellés J et al (2008) Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. J Mater Sci Mater Med 19:2047–2053

    Article  CAS  PubMed  Google Scholar 

  54. Cao Y, Rodriguez A, Vacanti M et al (1998) Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9:475–487

    Article  CAS  PubMed  Google Scholar 

  55. Welsing RT, van Tienen TG, Ramrattan N et al (2008) Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am J Sports Med 36:1978–1989

    Article  PubMed  Google Scholar 

  56. Mandal BB, Park SH, Gil ES, Kaplan DL (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Mandal BB, Park SH, Gil ES, Kaplan DL (2011) Stem cell-based meniscus tissue engineering. Tissue Eng Part A 17:2749–2761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Ballyns JJ, Gleghorn JP, Niebrzydowski V et al (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A 14:1195–1202

    Article  PubMed  Google Scholar 

  59. Ballyns JJ, Wright TM, Bonassar LJ (2010) Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials 31:6756–6763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kobayashi M, Toguchida J, Oka M (2003) Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 24:639–647

    Article  CAS  PubMed  Google Scholar 

  61. Kobayashi M, Chang YS, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243–3248

    Article  CAS  PubMed  Google Scholar 

  62. Chiari C, Koller U, Dorotka R et al (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14:1056–1065

    Article  CAS  PubMed  Google Scholar 

  63. Kon E, Chiari C, Marcacci M et al (2008) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A 14:1067–1080

    Article  CAS  PubMed  Google Scholar 

  64. Klompmaker J, Veth RPH, Jansen HWB et al (1996) Meniscal replacement using a porous polymer prosthesis: a preliminary study in the dog. Biomaterials 17:1169–1175

    Article  CAS  PubMed  Google Scholar 

  65. Esposito AR, Moda M et al (2013) Biores Open Access 2(2):138–147

    Google Scholar 

  66. Filardo G, Andriolo L, Kon E et al (2014) Meniscal scaffolds: results and indications. A systematic literature review. Int Orthop. doi:10.1007/s00264-014-2415-x

    PubMed Central  Google Scholar 

  67. Li S-T, Rodkey WG, Yuen D et al (2002) Type I collagen- based template for meniscus regeneration. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Gresser JD, Yaszemski MJ, Altobelli DE (eds) Tissue engineering and biodegradable equivalents. Scientific and clinical applications. Marcel Dekker, New York, pp 237–266

    Google Scholar 

  68. Rodkey WG (2008) A look beyond the horizon. In: Feagin JA Jr, Steadman JR (eds) The crucial principles in care of the knee. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  69. Stone KR, Rodkey WG, Webber RJ et al (1990) Future directions: collagen-based prosthesis for meniscal regeneration. Clin Orthop Relat Res 252:129–135

    PubMed  Google Scholar 

  70. Stone KR, Rodkey WG, Webber RJ et al (1992) Meniscal regeneration with copolymeric collagen scaffolds: in vitro and in vivo studies evaluated clinically, histologically, biochemically. Am J Sports Med 20:104–111

    Article  CAS  PubMed  Google Scholar 

  71. Tienen TG, Heijkants RG, de Groot JH et al (2006) Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med 34:64–71

    Article  PubMed  Google Scholar 

  72. Aufderheide AC, Athanasiou KA (2007) Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng 13(9):2195–2205

    Article  CAS  PubMed  Google Scholar 

  73. Weinand C, Peretti GM, Adams SB Jr et al (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34(11):1779–1789, Epub

    Article  PubMed  Google Scholar 

  74. Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen SS et al (2002) Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng 8(1):93–105

    Article  CAS  PubMed  Google Scholar 

  75. Peretti GM, Gill TJ, Xu JW, Randolph MA, Morse KR, Zaleske DJ (2004) Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med 32(1):146–158

    Article  PubMed  Google Scholar 

  76. Ibarra C, Jannetta C, Vacanti CA, Cao Y, Kim TH, Upton JV et al (1997) Tissue engineered meniscus: a potential new alternative to allogeneic meniscus transplantation. Transplant Proc 29:986–988

    Article  CAS  PubMed  Google Scholar 

  77. Stone KR, Steadman JR, Rodkey WG, Li ST (1997) Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Joint SurgAm 79(12):1770–1777

    CAS  Google Scholar 

  78. Heinlein B, Kutzner I, Graichen F, Bender A, Rohlmann A, Halder AM, Beier A, Bergmann G (2009) ESB Clinical Biomechanics Award 2008: complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6–10 months. Clin Biomech (Bristol Avon) 24(4):315–326, Epub

    Article  Google Scholar 

  79. Mündermann A, Dyrby CO, D’Lima DD, Colwell CW Jr, Andriacchi TP (2008) In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res 26(9):1167–1172

    Article  PubMed  Google Scholar 

  80. Garrett JC (1992) Meniscal transplantation. In: Aichroth PM, Canon WD (eds) Knee surgery, current practice. Raven Press Ltd, New York, pp 95–102

    Google Scholar 

  81. Jackson DW, McDevitt CA et al (1992) Meniscal transplantation using fresh and cryopreserved allografts. An experimental study in goats. Am J Sports Med 20(6):644–656

    Article  CAS  PubMed  Google Scholar 

  82. Elliott DM, Jones R et al (2002) Joint degeneration following meniscal allograft transplantation in a canine model: mechanical properties and semiquantitative histology of articular cartilage. Knee Surg Sports Traumatol Arthrosc 10(2):109–118

    Article  PubMed  Google Scholar 

  83. Mora G, Alvarez E et al (2003) Articular cartilage degeneration after frozen meniscus and Achilles tendon allograft transplantation: experimental study in sheep. Arthroscopy 19(8):833–841

    Article  PubMed  Google Scholar 

  84. Dienst M, Greis PE et al (2007) Effect of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental study in human cadaveric knee joints. Am J Sports Med 35(1):34–42

    Article  PubMed  Google Scholar 

  85. von Lewinski G, Kohn D et al (2008) The influence of nonanatomical insertion and incongruence of meniscal transplants on the articular cartilage in an ovine model. Am J Sports Med 36(5):841–850

    Article  Google Scholar 

  86. Rath E, Richmond JC et al (2001) Meniscal allograft transplantation. Two- to eight-year results. Am J Sports Med 29(4):410–414

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Havıtçıoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Havıtçıoğlu, H., Özmanevra, R., Karakaşlı, A. (2016). A Fibroelastic Cartilage: Meniscus. In: Korkusuz, F. (eds) Musculoskeletal Research and Basic Science. Springer, Cham. https://doi.org/10.1007/978-3-319-20777-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20777-3_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20776-6

  • Online ISBN: 978-3-319-20777-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics