Skip to main content

Current Strategies in Osteochondral Repair with Biomaterial Scaffold

  • Chapter
Musculoskeletal Research and Basic Science

Abstract

Osteoarthritis (OA) is a common disease defined as degenerative arthritis or joint disease involving degradation of articular cartilage and subchondral bone, and it could potentially affect the quality of life of elderly populations worldwide. The management of OA remains challenging and controversial. Although there are several clinical options for the treatment of OA, regeneration of the damaged articular cartilage has proven difficult due to the limited healing capacity. With the advancements in tissue engineering approaches including cell-based technologies and development of biomaterial scaffolds over the past decade, new therapeutic options for patients with osteochondral lesions potentially exist. This chapter will focus on the feasibility of tissue-engineered biomaterial scaffolds, which can mimic the native osteochondral complex, for osteochondral repair and highlight the recent development of these techniques toward tissue regeneration, which will contribute to osteochondral repair for the patients who are involved with an incurable OA treated by traditional procedures. Moreover, basic anatomy, strategy for osteochondral repair, and the design and fabrication methods of scaffolds as well as the choice of cells, growth factor, and materials will be discussed. Specifically, we focus on the latest preclinical animal studies using large animals and clinical trials with high clinical relevance. Accordingly, this will contribute to an understanding of the latest trends in osteochondral repair and future application of such clinical therapies in patients with OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17(6):705–713. doi:10.1016/j.joca.2008.11.008, S1063-4584(08)00353-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI (2009) Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng Part A 15(9):2595–2604. doi:10.1089/ten.TEA.2008.0511, 10.1089/ten.TEA.2008.0511 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Albrecht C, Schlegel W, Bartko P, Eckl P, Jagersberger T, Vecsei V, Marlovits S (2010) Changes in the endogenous BMP expression during redifferentiation of chondrocytes in 3D cultures. Int J Mol Med 26(3):317–323

    CAS  PubMed  Google Scholar 

  4. Alhadlaq A, Mao JJ (2005) Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am 87(5):936–944. doi:10.2106/JBJS.D.02104, 87/5/936 [pii]

    Article  PubMed  Google Scholar 

  5. Ando W, Fujie H, Moriguchi Y, Nansai R, Shimomura K, Hart DA, Yoshikawa H, Nakamura N (2012) Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. Eur Cell Mater 24:292–307. doi:vol024a21 [pii]

    Google Scholar 

  6. Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N (2007) Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials 28(36):5462–5470. doi:10.1016/j.biomaterials.2007.08.030, S0142-9612(07)00672-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Ando W, Tateishi K, Katakai D, Hart DA, Higuchi C, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N (2008) In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Eng Part A 14(12):2041–2049. doi:10.1089/ten.tea.2008.0015

    Article  CAS  PubMed  Google Scholar 

  8. Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG, Engebretsen L (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32(1):211–215

    Article  PubMed  Google Scholar 

  9. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A (2011) Bone regeneration and stem cells. J Cell Mol Med 15(4):718–746. doi:10.1111/j.1582-4934.2010.01224.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Babensee JE, McIntire LV, Mikos AG (2000) Growth factor delivery for tissue engineering. Pharm Res 17(5):497–504

    Article  CAS  PubMed  Google Scholar 

  11. Bal BS, Rahaman MN, Jayabalan P, Kuroki K, Cockrell MK, Yao JQ, Cook JL (2010) In vivo outcomes of tissue-engineered osteochondral grafts. J Biomed Mater Res B Appl Biomater 93(1):164–174. doi:10.1002/jbm.b.31571

    PubMed  Google Scholar 

  12. Barr RJ, Gregory JS, Reid DM, Aspden RM, Yoshida K, Hosie G, Silman AJ, Alesci S, Macfarlane GJ (2012) Predicting OA progression to total hip replacement: can we do better than risk factors alone using active shape modelling as an imaging biomarker? Rheumatology (Oxford) 51(3):562–570. doi:10.1093/rheumatology/ker382, ker382 [pii]

    Article  Google Scholar 

  13. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224. doi:0092-8674(82)90027-7 [pii]

    Google Scholar 

  14. Bhattarai SR, Bhattarai N, Viswanathamurthi P, Yi HK, Hwang PH, Kim HY (2006) Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J Biomed Mater Res A 78(2):247–257. doi:10.1002/jbm.a.30695

    Article  PubMed  CAS  Google Scholar 

  15. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895. doi:10.1056/NEJM199410063311401

    Article  CAS  PubMed  Google Scholar 

  16. Castro NJ, Hacking SA, Zhang LG (2012) Recent progress in interfacial tissue engineering approaches for osteochondral defects. Ann Biomed Eng 40(8):1628–1640. doi:10.1007/s10439-012-0605-5

    Article  PubMed  Google Scholar 

  17. Chang KY, Cheng LW, Ho GH, Huang YP, Lee YD (2009) Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater 5(6):1937–1947. doi:10.1016/j.actbio.2009.02.002, S1742-7061(09)00063-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805. doi:10.1016/j.biomaterials.2011.03.041, S0142-9612(11)00310-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Chen QZ, Boccaccini AR (2006) Poly(D,L-lactic acid) coated 45S5 bioglass-based scaffolds: processing and characterization. J Biomed Mater Res A 77(3):445–457. doi:10.1002/jbm.a.30636

    Article  CAS  PubMed  Google Scholar 

  20. Chouzouri G, Xanthos M (2007) In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater 3(5):745–756. doi:10.1016/j.actbio.2007.01.005, S1742-7061(07)00016-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Chu CR, Szczodry M, Bruno S (2010) Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 16(1):105–115. doi:10.1089/ten.TEB.2009.0452

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chubinskaya S, Segalite D, Pikovsky D, Hakimiyan AA, Rueger DC (2008) Effects induced by BMPS in cultures of human articular chondrocytes: comparative studies. Growth Factors 26(5):275–283. doi:10.1080/08977190802291733, 795281645 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Clark JM, Huber JD (1990) The structure of the human subchondral plate. J Bone Joint Surg Br 72(5):866–873

    CAS  PubMed  Google Scholar 

  24. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460

    Article  CAS  PubMed  Google Scholar 

  25. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, Chong PP, Kamarul T (2011) A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res 29(9):1336–1342. doi:10.1002/jor.21413

    Article  PubMed  Google Scholar 

  26. Dawson J, Linsell L, Zondervan K, Rose P, Randall T, Carr A, Fitzpatrick R (2004) Epidemiology of hip and knee pain and its impact on overall health status in older adults. Rheumatology (Oxford) 43(4):497–504. doi:10.1093/rheumatology/keh086, keh086 [pii]

    Article  CAS  Google Scholar 

  27. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942. doi:10.1002/1529-0131(200108)44:8, <1928::AID-ART331>3.0.CO;2-P

    Article  PubMed  Google Scholar 

  28. Deng T, Lv J, Pang J, Liu B, Ke J (2012) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. doi:10.1002/term.1556 [doi]

    Google Scholar 

  29. Dhollander AA, Liekens K, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC (2012) A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy 28(2):225–233. doi:10.1016/j.arthro.2011.07.017, S0749-8063(11)00994-7 [pii]

    Article  PubMed  Google Scholar 

  30. Duan P, Pan Z, Cao L, He Y, Wang H, Qu Z, Dong J, Ding J (2013) The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J Biomed Mater Res A. doi:10.1002/jbm.a.34683 [doi]

  31. Duan Y, Hao D, Li M, Wu Z, Li D, Yang X, Qiu G (2012) Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int 32(4):985–990. doi:10.1007/s00296-010-1731-8

    Article  CAS  PubMed  Google Scholar 

  32. Dunlop DD, Manheim LM, Song J, Chang RW (2001) Arthritis prevalence and activity limitations in older adults. Arthritis Rheum 44(1):212–221. doi:10.1002/1529-0131(200101)44:1, <212::AID-ANR28>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  33. El-Ayoubi R, DeGrandpre C, DiRaddo R, Yousefi AM, Lavigne P (2011) Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl 25(5):429–444. doi:10.1177/0885328209355332, 0885328209355332 [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M (2013) Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med 41(8):1786–1793. doi:10.1177/0363546513490658, 0363546513490658 [pii]

    Article  PubMed  Google Scholar 

  35. Forsey RW, Tare R, Oreffo RO, Chaudhuri JB (2012) Perfusion bioreactor studies of chondrocyte growth in alginate-chitosan capsules. Biotechnol Appl Biochem 59(2):142–152. doi:10.1002/bab.1009

    Article  CAS  PubMed  Google Scholar 

  36. Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI (2002) Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng 8(5):827–837. doi:10.1089/10763270260424187

    Article  CAS  PubMed  Google Scholar 

  37. Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447. doi:10.1007/s00167-010-1072-x

    Article  PubMed Central  PubMed  Google Scholar 

  38. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16, discussion 16. doi:vol005a01 [pii]

    CAS  PubMed  Google Scholar 

  39. Haverkamp DJ, Schiphof D, Bierma-Zeinstra SM, Weinans H, Waarsing JH (2011) Variation in joint shape of osteoarthritic knees. Arthritis Rheum 63(11):3401–3407. doi:10.1002/art.30575

    Article  CAS  PubMed  Google Scholar 

  40. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730-734. doi:S0749806302000257 [pii]

    Google Scholar 

  41. Holland TA, Bodde EW, Cuijpers VM, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2007) Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage 15(2):187–197. doi:10.1016/j.joca.2006.07.006, S1063-4584(06)00231-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  42. Hsu FY, Hung YS, Liou HM, Shen CH (2010) Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomater 6(6):2140–2147. doi:10.1016/j.actbio.2009.12.023, S1742-7061(09)00564-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Hung CT, Lima EG, Mauck RL, Takai E, LeRoux MA, Lu HH, Stark RG, Guo XE, Ateshian GA (2003) Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech 36(12):1853–1864. doi:S0021929003002136 [pii]

    Google Scholar 

  44. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10(6):432–463. doi:10.1053/joca.2002.0801, S1063458402908010 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543. doi:S0142961200001216 [pii]

    Google Scholar 

  46. Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25(10):1277–1290. doi:10.1002/jor.20442

    Article  CAS  PubMed  Google Scholar 

  47. Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S, Zalzal P, Hurtig M, Team CI-BoST (2006) Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials 27(22):4120–4131. doi:10.1016/j.biomaterials.2006.03.005, S0142-9612(06)00214-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  48. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491. doi:10.1016/j.biomaterials.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  49. Kawanishi M, Oura A, Furukawa K, Fukubayashi T, Nakamura K, Tateishi T, Ushida T (2007) Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system. Tissue Eng 13(5):957–964. doi:10.1089/ten.2006.0176

    Article  CAS  PubMed  Google Scholar 

  50. Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73. doi:10.1089/ten.teb.2008.0388, 10.1089/ten.teb.2008.0388 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Kim K, Yeatts A, Dean D, Fisher JP (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539. doi:10.1089/ten.TEB.2010.0171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Koga H, Shimaya M, Muneta T, Nimura A, Morito T, Hayashi M, Suzuki S, Ju YJ, Mochizuki T, Sekiya I (2008) Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther 10(4):R84. doi:10.1186/ar2460, ar2460 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190. doi:10.1177/0363546510392711, 0363546510392711 [pii]

    Article  PubMed  Google Scholar 

  54. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124. doi:10.1002/jor.20958

    PubMed  Google Scholar 

  55. Kon E, Filardo G, Di Martino A, Busacca M, Moio A, Perdisa F, Marcacci M (2013a) Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med. doi:0363546513505434 [pii] 10.1177/0363546513505434 [doi]

  56. Kon E, Filardo G, Robinson D, Eisman JA, Levy A, Zaslav K, Shani J, Altschuler N (2013b) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2467-2 [doi]

  57. Kurz B, Domm C, Jin M, Sellckau R, Schunke M (2004) Tissue engineering of articular cartilage under the influence of collagen I/III membranes and low oxygen tension. Tissue Eng 10:1277–1286. doi:10.1089/ten.2004.10.1277

    Article  CAS  PubMed  Google Scholar 

  58. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58(1):26–35. doi:10.1002/art.23176

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lee M, Wu BM (2012) Recent advances in 3D printing of tissue engineering scaffolds. Methods Mole Biol (Clifton, NJ) 868:257–267. doi:10.1007/978-1-61779-764-4_15

    Article  CAS  Google Scholar 

  60. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2013) Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. J Biomed Mater Res A. doi:10.1002/jbm.a.34924 [doi]

  61. Li WJ, Cooper JA Jr, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2(4):377–385. doi:10.1016/j.actbio.2006.02.005, S1742-7061(06)00021-3 [pii]

    Article  PubMed  Google Scholar 

  62. Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40(8):1686–1693. doi:10.1016/j.jbiomech.2006.09.004, S0021-9290(06)00318-6 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  63. Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, Tuan RS (2013) Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34(2):331–339. doi:10.1016/j.biomaterials.2012.09.048, S0142-9612(12)01056-3 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE, Study of Osteoporotic Fractures Research G (2009) The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthritis Cartilage 17(10):1313–1318. doi:10.1016/j.joca.2009.04.011, S1063-4584(09)00114-9 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433. doi:10.1007/s00167-010-1054-z

    Article  PubMed  Google Scholar 

  66. Mannoni A, Briganti MP, Di Bari M, Ferrucci L, Costanzo S, Serni U, Masotti G, Marchionni N (2003) Epidemiological profile of symptomatic osteoarthritis in older adults: a population based study in Dicomano, Italy. Ann Rheum Dis 62(6):576–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Mano JF, Reis RL (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273. doi:10.1002/term.37

    Article  CAS  PubMed  Google Scholar 

  68. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S (2005) Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 435:96–105. doi:00003086-200506000-00015 [pii]

    Google Scholar 

  69. Marquass B, Somerson JS, Hepp P, Aigner T, Schwan S, Bader A, Josten C, Zscharnack M, Schulz RM (2010) A novel MSC-seeded triphasic construct for the repair of osteochondral defects. J Orthop Res 28(12):1586–1599. doi:10.1002/jor.21173

    Article  CAS  PubMed  Google Scholar 

  70. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765. doi:10.1016/j.jbiomech.2006.03.008, S0021-9290(06)00096-0 [pii]

    Article  PubMed  Google Scholar 

  71. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11(2):228–232. doi:10.1038/nm1181, nm1181 [pii]

    Article  CAS  PubMed  Google Scholar 

  72. Mente PL, Lewis JL (1994) Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 12(5):637–647. doi:10.1002/jor.1100120506

    Article  CAS  PubMed  Google Scholar 

  73. Miao X, Tan DM, Li J, Xiao Y, Crawford R (2008) Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater 4(3):638–645. doi:10.1016/j.actbio.2007.10.006, S1742-7061(07)00172-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  74. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T (2009) Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37(5):902–908. doi:10.1177/0363546508330137, 0363546508330137 [pii]

    Article  PubMed  Google Scholar 

  75. Miot S, Brehm W, Dickinson S, Sims T, Wixmerten A, Longinotti C, Hollander AP, Mainil-Varlet P, Martin I (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater 23:222–236, vol023a17 [pii]

    CAS  PubMed  Google Scholar 

  76. Mobasheri A (2012) Osteoarthritis year 2012 in review: biomarkers. Osteoarthritis Cartilage 20(12):1451–1464. doi:10.1016/j.joca.2012.07.009, S1063-4584(12)00897-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  77. Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A (2013) Osteoarthritis year 2013 in review: imaging. Osteoarthritis Cartilage 21(10):1425–1435. doi:10.1016/j.joca.2013.07.010, S1063-4584(13)00895-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  78. Murphy L, Helmick CG (2012) The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs 112(3 Suppl 1):S13–S19. doi:10.1097/01.naj.0000412646.80054.21

    Article  PubMed  Google Scholar 

  79. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. doi:10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  80. Nakamura N, Hui J, Koizumi K, Yasui Y, Nishii T, Lad D, Karnatzikos G, Gobbi A (2014) Stem cell therapy in cartilage repair – culture-free and cell culture–based methods. Oper Tech Orthop 24(1):54–60. doi:10.1053/j.oto.2014.02.006

    Article  Google Scholar 

  81. Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270. doi:10.1111/j.1582-4934.2012.01571.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. O’Shea TM, Miao X (2008) Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev 14(4):447–464. doi:10.1089/ten.teb.2008.0327

    Article  PubMed  CAS  Google Scholar 

  83. Oegema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr (1997) The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37(4):324–332. doi:10.1002/(SICI)1097-0029(19970515)37:4<324::AID-JEMT7>3.0.CO;2-K, 10.1002/(SICI)1097-0029(19970515)37:4<324::AID-JEMT7>3.0.CO;2-K [pii]

    Article  PubMed  Google Scholar 

  84. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137. doi:10.1016/j.biomaterials.2006.07.034, S0142-9612(06)00659-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  85. Orth P, Cucchiarini M, Kohn D, Madry H (2013) Alterations of the subchondral bone in osteochondral repair – translational data and clinical evidence. Eur Cell Mater 25:299–316, discussion 314–296. doi:vol025a21 [pii]

    CAS  PubMed  Google Scholar 

  86. Orth P, Meyer HL, Goebel L, Eldracher M, Ong MF, Cucchiarini M, Madry H (2013) Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res 31(11):1772–1779. doi:10.1002/jor.22418

    CAS  PubMed  Google Scholar 

  87. Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 20(6):1182–1191. doi:10.1007/s00167-011-1655-1

    Article  PubMed  Google Scholar 

  88. Peat G, McCarney R, Croft P (2001) Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis 60(2):91–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Pena J, Corrales T, Izquierdo-Barba I, Serrano MC, Portoles MT, Pagani R, Vallet-Regi M (2006) Alkaline-treated poly(epsilon-caprolactone) films: degradation in the presence or absence of fibroblasts. J Biomed Mater Res A 76(4):788–797. doi:10.1002/jbm.a.30547

    Article  PubMed  CAS  Google Scholar 

  90. Ravi B, Escott B, Shah PS, Jenkinson R, Chahal J, Bogoch E, Kreder H, Hawker G (2012) A systematic review and meta-analysis comparing complications following total joint arthroplasty for rheumatoid arthritis versus for osteoarthritis. Arthritis Rheum 64(12):3839–3849. doi:10.1002/art.37690

    Article  PubMed  Google Scholar 

  91. Re’em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8(9):3283–3293. doi:10.1016/j.actbio.2012.05.014, S1742-7061(12)00218-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  92. Ren J, Zhao P, Ren T, Gu S, Pan K (2008) Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med 19(3):1075–1082. doi:10.1007/s10856-007-3181-8

    Article  CAS  PubMed  Google Scholar 

  93. Reyes R, Delgado A, Sanchez E, Fernandez A, Hernandez A, Evora C (2012) Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFbeta1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med. doi:10.1002/term.1549 [doi]

    Google Scholar 

  94. Reyes R, Delgado A, Solis R, Sanchez E, Hernandez A, San Roman J, Evora C (2013) Cartilage repair by local delivery of TGF-beta1 or BMP-2 from a novel, segmented polyurethane/polylactic-co-glycolic bilayered scaffold. J Biomed Mater Res A. doi:10.1002/jbm.a.34769 [doi]

  95. Rodrigues MT, Gomes ME, Reis RL (2011) Current strategies for osteochondral regeneration: from stem cells to pre-clinical approaches. Curr Opin Biotechnol 22(5):726–733. doi:10.1016/j.copbio.2011.04.006, S0958-1669(11)00068-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  96. Roemer FW, Guermazi A (2012) Osteoarthritis year 2012 in review: imaging. Osteoarthritis Cartilage 20(12):1440–1446. doi:10.1016/j.joca.2012.07.008, S1063-4584(12)00896-5 [pii]

    Article  PubMed  Google Scholar 

  97. Rose FR, Hou Q, Oreffo RO (2004) Delivery systems for bone growth factors – the new players in skeletal regeneration. J Pharm Pharmacol 56(4):415–427. doi:10.1211/0022357023312

    Article  CAS  PubMed  Google Scholar 

  98. Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Bohler N, Labek G (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28(8):1329–1332. doi:10.1016/j.arth.2013.01.012

    Article  PubMed  Google Scholar 

  99. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52(8):2521–2529. doi:10.1002/art.21212

    Article  PubMed  Google Scholar 

  100. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765. doi:10.1002/mabi.200400026

    Article  CAS  PubMed  Google Scholar 

  101. Sarasam AR, Krishnaswamy RK, Madihally SV (2006) Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties. Biomacromolecules 7(4):1131–1138. doi:10.1021/bm050935d

    Article  CAS  PubMed  Google Scholar 

  102. Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH (2004) Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng 10(9–10):1376–1385. doi:10.1089/ten.2004.10.1376

    Article  CAS  PubMed  Google Scholar 

  103. Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G, Hartmann S, Schnettler R (2013) Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 183(1):184–192. doi:10.1016/j.jss.2012.11.036, S0022-4804(12)01910-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  104. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10(1):62–70. doi:10.1053/joca.2001.0482, S1063458401904820 [pii]

    Article  CAS  PubMed  Google Scholar 

  105. Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW (2014) Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng 5:2041731414541850. doi: 10.1177/2041731414541850

    Google Scholar 

  106. Shafiee A, Soleimani M, Chamheidari GA, Seyedjafari E, Dodel M, Atashi A, Gheisari Y (2011) Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res A 99(3):467–478. doi:10.1002/jbm.a.33206

    Article  PubMed  CAS  Google Scholar 

  107. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751. doi:S0142961202002235 [pii]

    Google Scholar 

  108. Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, Kohda H, Kita K, Kanamoto T, Mae T, Nakata K, Shino K, Yoshikawa H, Nakamura N (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31(31):8004–8011. doi:10.1016/j.biomaterials.2010.07.017, S0142-9612(10)00858-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  109. Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, Gobbi A, Kita K, Horibe S, Shino K, Yoshikawa H, Nakamura N (2014a) Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng Part A. doi:10.1089/ten.tea.2013.0414 [doi]

  110. Shimomura K, Moriguchi Y, Murawski CD, Yoshikawa H, Nakamura N (2014b) Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. Tissue Eng Part B Rev. doi:10.1089/ten.TEB.2013.0543 [doi]

  111. Shintani N, Hunziker EB (2007) Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue. Arthritis Rheum 56(6):1869–1879. doi:10.1002/art.22701

    Article  CAS  PubMed  Google Scholar 

  112. Sosio C, Di Giancamillo A, Deponti D, Gervaso F, Scalera F, Melato M, Campagnol M, Boschetti F, Nonis A, Domeneghini C, Sannino A, Peretti GM (2014) Osteochondral repair by a novel interconnecting collagen-hydroxyapatite substitute: a large-animal study. Tissue Eng Part A. doi:10.1089/ten.TEA.2014.0129

    Google Scholar 

  113. Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20(6):646–655. doi:10.1016/j.semcdb.2009.03.017, S1084-9521(09)00069-X [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  115. Takahashi N, Knudson CB, Thankamony S, Ariyoshi W, Mellor L, Im HJ, Knudson W (2010) Induction of CD44 cleavage in articular chondrocytes. Arthritis Rheum 62(5):1338–1348. doi:10.1002/art.27410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Takahashi T, Ogasawara T, Asawa Y, Mori Y, Uchinuma E, Takato T, Hoshi K (2007) Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng 13(7):1583–1592. doi:10.1089/ten.2006.0322

    Article  CAS  PubMed  Google Scholar 

  117. Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J, Takaoka K, Yoshikawa H (2005) A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage 13(5):405–417. doi:10.1016/j.joca.2004.12.014, S1063-4584(04)00289-4 [pii]

    Article  PubMed  Google Scholar 

  118. Tan W, Twomey J, Guo D, Madhavan K, Li M (2010) Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites. IEEE Trans Nanobioscience 9(2):111–120. doi:10.1109/TNB.2010.2043367

    Article  CAS  PubMed  Google Scholar 

  119. Tsumaki N, Okada M, Yamashita A (2014) iPS cell technologies and cartilage regeneration. Bone. doi:10.1016/j.bone.2014.07.011

    Google Scholar 

  120. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2163–2196. doi:10.1016/s0140-6736(12)61729-2

    Article  PubMed  Google Scholar 

  121. Yamasaki N, Hirao M, Nanno K, Sugiyasu K, Tamai N, Hashimoto N, Yoshikawa H, Myoui A (2009) A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res B Appl Biomater 91(2):788–798. doi:10.1002/jbm.b.31457

    Article  PubMed  CAS  Google Scholar 

  122. Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 15(2):127–141. doi:10.1089/ten.teb.2008.0371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9(7):7236–7247. doi:10.1016/j.actbio.2013.04.003, S1742-7061(13)00175-X [pii]

    Article  CAS  PubMed  Google Scholar 

  124. Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, Xu G, Heng BC, Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057. doi:10.1016/j.biomaterials.2013.04.055, S0142-9612(13)00529-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  125. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P (2007) OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage 15(9):981–1000. doi:10.1016/j.joca.2007.06.014, S1063-4584(07)00234-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  126. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P (2008) OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16(2):137–162. doi:10.1016/j.joca.2007.12.013, S1063-4584(07)00397-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  127. Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, Arden NK, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P (2010) OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 18(4):476–499. doi:10.1016/j.joca.2010.01.013, S1063-4584(10)00046-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  128. Zheng MH, Willers C, Kirilak L, Yates P, Xu J, Wood D, Shimmin A (2007) Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng 13(4):737–746. doi:10.1089/ten.2006.0246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the New Energy and Industrial Technology Development Organization, Japan, Grant-in-Aid for Scientific Research (B), and Japan Society for the Promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimasa Nakamura MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shimomura, K. et al. (2016). Current Strategies in Osteochondral Repair with Biomaterial Scaffold. In: Korkusuz, F. (eds) Musculoskeletal Research and Basic Science. Springer, Cham. https://doi.org/10.1007/978-3-319-20777-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20777-3_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20776-6

  • Online ISBN: 978-3-319-20777-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics