Advertisement

Complex ΨDOSS and systems of complex differential equations

  • Sabir Umarov
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 41)

Abstract

In Chapters 4–7 we discussed pseudo-differential equations of integer and fractional orders with ψDOSS depending on real variables \(t \in \mathbb{R}\) and \(x \in \mathbb{R}^{n}\). In this section we will discuss differential and pseudo-differential equations depending on complex variables \(t =\tau +i\sigma \in \mathbb{C}\) and \(z = x + iy \in \mathbb{C}^{n}.\) Consider two simple examples with the one-dimensional “spatial” variable:
  1. (i)

    “complex wave” equation, and

     
  2. (ii)

    “complex heat” equation.

     

References

  1. [BG76]
    Baouendi M.S., Goulaouic, C. Cauchy problem for analytic pseudo-differential operators. Comm. in Part. Diff. Equat., 1 (2), 135–189 (1976)MathSciNetCrossRefGoogle Scholar
  2. [Ber04]
    Bernstein, S.N.: Sur la natur analytique des solutions des équations aux dérivées partielles du second ordre. Math. Ann. 59, 20–76 (1904)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Ber28]
    Bernstein, S.N.: Demonstration du theoreme de M. Hilbert sur la nature analytique des solutions des equations du type elliptique sans l’emploi des series normales. Math. Ztschr. 28, 330–348 (1928)zbMATHGoogle Scholar
  4. [Cal58]
    Calderon, A.P.: Uniqueness in the Cauchy problem for partial differential equations. Amer. J. of Math., 80, 16–35 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Cau42]
    Cauchy, A.-L.: Mémoire sur l’emploi du calcul des limites dans l’intégration des équations aux dérivées partielles. Comptes rendus 15, 44–59 (1842)Google Scholar
  6. [Chi89]
    Chirka, E.M.: Complex analytic sets. Kluwer Academic Publishers (1989)Google Scholar
  7. [DN55]
    Douglis, A., Nirenberg, L.: Interior estimates for elliptic systems of partial differential equations. Comm. Pure. & Appl. Math. 8, 503–538 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Dub84]
    Dubinskii, Yu.A.: Fourier transformation of analytic functions. The complex Fourier method. Dokl. Akad. Nauk SSSR., 275 (3), 533–536 (1984) (in Russian)MathSciNetGoogle Scholar
  9. [Dub90]
    Dubinskii, Yu. A.: The Cauchy problem and pseudo-differential operators in the complex domain. Russ. Math. Surv., 45 (2), 95–128 (1990)MathSciNetCrossRefGoogle Scholar
  10. [Dub96]
    Dubinskii Yu. A.: Cauchy problem in complex domains. Moscow (1996) (In Russian)Google Scholar
  11. [Gal08]
    Gal, C.G., Gal, S.G., Goldstein, G.A.: Evolution equations with real time variable and complex spatial variables. Compl. Var. Elliptic Equ. 53, 753–774; Higher-order heat and Laplace-type equations with real time variable and complex spatial variable. 55, 357–373; Wave and telegraph equations with real time variable and complex spatial variables. 57, 91–109 (2008–2010–2012)Google Scholar
  12. [GR09]
    Ganning, R., Rossi, H.: Analytic Functions of Several Complex Variables. AMS Chelsea Publishing (2009)Google Scholar
  13. [LGK67]
    Gårding, L., Leray, J., Kotake, T.: Probleme de Cauchy. Moscou, Mir (1967) (in Russian)zbMATHGoogle Scholar
  14. [GS53]
    Gel’fand I.M., Shilov, G.E.: Fourier transforms of rapidly growing functions and questions of uniqueness of the solution of Cauchy’s problem. Usp. Mat. Nauk. 8 (6), 3–54 (1953)zbMATHGoogle Scholar
  15. [VG91]
    Gindikin S.G., Volevich, L.R.: The Cauchy problem. In Partial Differential Equations III. Egorov, Yu.V., Shubin M.A. (eds), Springer-Verlag, Berlin, 1–87 (1991)Google Scholar
  16. [Hay78]
    Hayne, R.M.:. Uniqueness in the Cauchy problem for parabolic equations. Trans. Am. Math. Soc., 241, 373–399 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Hol01]
    Holmgren, E.: Über Systeme von linearen partiellen Differentialgleichungen. Öfversigt af Kongl. Vetenskaps-Academien Förhandlinger, 58, 91–103 (1901)Google Scholar
  18. [Hor83]
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, I - IV. Springer-Verlag, Berlin-Heidelberg-New-York (1983)Google Scholar
  19. [Hor90]
    Hörmander, L.: An introduction to complex analysis in several variables. North-Holland (1990)Google Scholar
  20. [K81]
    Kamynin, L.I., Khimchenko, B.N.: Tikhonov-Petrovskii problem for second-order parabolic equations. Siberian Mathematical Journal, 22 (5), 709–734 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Kit76]
    Kitagawa, K.: A remark on a necessary condition of the Cauchy-Kowalevsky. Publ. RIMS, Kyoto Univ. 11, 523–534 (1976)Google Scholar
  22. [Kit90]
    Kitagawa, K.: Sur le téorème de Cauchy-Kowalevski. J. Math. Kyoto Univ. 30 (1), 1–32 (1990)MathSciNetzbMATHGoogle Scholar
  23. [K73]
    Korobeinik, Yu.F., Kubrak, V.K.: The existence of particular solutions of a differential equation of infinite order with prescribed growth. Izv. Vys. Matematika. 9 (136), 36–45 (1973) (in Russian)MathSciNetGoogle Scholar
  24. [Kow1874]
    Kowalevsky, S.: Zür theorie der partiellen differentialgleichungen. Journal für die reine und angevandte mathematik, 1–32 (1874)Google Scholar
  25. [Leo76]
    Leont’ev, A.F.: Series of Exponents, Nauka, Moscow (1976) (in Russian)Google Scholar
  26. [Ler53]
    Leray, J.: Hyperbolic differential equations. Princeton (1953)Google Scholar
  27. [Met93]
    Métivier, G.: Counterexamples to Hölmgren’s uniqueness for analytic non linear Cauchy problems. Invent. Math., 112, 217–222 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Miz62]
    Mizohata, S.: Solutiones nulles et solutiones non analytiques. J. Math. Kioto. Univ. 2 (1), 271–302 (1962)Google Scholar
  29. [Miz67]
    Mizohata, S.: The Theory of Partial Differential Equations. Cambridge University Press (1979)Google Scholar
  30. [Miz74]
    Mizohata, S.: On Kowalewskian systems. Russ. Math. Surv. 29 (2), 223–235 (1974) doi:10.1070/RM1974v029n02ABEH003837MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Miz74]
    Mizohata, S.: On Cauchy-Kowalevski’s Theorem: A Necessary Condition. Publ. RIMS, Kyoto Univ. 10, 509–519 (1974)Google Scholar
  32. [Mor58]
    Morrey, C.: On the analyticity of the solutions of analytic nonlinear elliptic systems of partial differential equations. Amer. J. Math. 80 (1), 198–277 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [MN57]
    Morrey, C., Nirenberg, L.: On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math. 10, 271–290 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Nap82]
    Napalkov, V.V.: Convolution equations in multidimensional spaces. Mathematical Notes of the Acad. Sci. USSR, 25 (5), 393 pp., Springer (1979)Google Scholar
  35. [OR73]
    Oleynik, O.A., Radkevich, E.V.: On the analyticity of solutions of linear partial differential equations. Mathematics of the USSR-Sbornik, 19 (4), 581–596 (1973)CrossRefGoogle Scholar
  36. [Ovs65]
    Ovsyannikov, L.V.: A singular operator in a scale of Banach space. Dokl. Akad. Nauk SSSR, 163, 819–822 (1965) (English transl. Soviet Math. Dokl., 6 (1965))Google Scholar
  37. [Pet96]
    Petrovskii, I.G.: Selected works: Systems of partial differential equations and algebraic geometry, Part I. Gordon and Breach Publishers (1996)Google Scholar
  38. [Pl54]
    Plis, A.: The problem of uniqueness for the solution of a system of partial differential equations. Bull. Acad. Polon. Sci. 2, 55–57 (1954)MathSciNetzbMATHGoogle Scholar
  39. [Ren10]
    Render, H.: Goursat and Dirichlet problems for holomorphic partial differential equations. Comput. Meth. Funct. Theory. 10, 519–554 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. [Sch51]
    Schwartz, L.: Théorie des distributions I, II. Hermann, Paris (1951)Google Scholar
  41. [S88]
    Sternin, B.Y., Shatalov, V.E.: Differential equations on complex manifolds and Maslov’s canonical operators. Sov. Math. Survs. 43, 99–124 (1988)MathSciNetzbMATHGoogle Scholar
  42. [Suz64]
    Suzuki, H.: Analytic hypoelliptic differential operators of first order in two independent variables. J. Math. Society Japan. 16 (4), 367–374 (1964)CrossRefzbMATHGoogle Scholar
  43. [Tac36]
    Täcklind, S.: Sur les classes quasianalitiques des solutions des l’equations aux derivées partielles du type parabolique. Nord. Acta. Regial. Sociatis schientiarum Uppsaliensis. Ser. 4, 10 (3), 3–55 (1936)Google Scholar
  44. [Tam06]
    Tamura, M.: On uniqueness in the Cauchy problem for systems for systems with partial analytic coefficients. Osaka J. Math. 43, 751–769 (2006)MathSciNetzbMATHGoogle Scholar
  45. [Tik35]
    Tikhonov, A.N.: Uniqueness theorems for heat equations, Mat. Sb., 42 (2), 199–216 (1935)MathSciNetzbMATHGoogle Scholar
  46. [Tre80]
    Treves, F.: Introduction to Pseudo-Differential and Fourier Integral Operators. Plenum Publishing Co., New York (1980)CrossRefGoogle Scholar
  47. [Uma91-1]
    Umarov, S.R.: Algebra of pseudo-differential operators with variable analytic symbols and well-posedness of corresponding equations. Differential Equations. 27 (6), 1056–1063 (1991)MathSciNetGoogle Scholar
  48. [Uma14]
    Umarov, S.R.: Pseudo-differential operators with meromorphic symbols and systems of complex differential equations. Complex variables and elliptic equations: An International Journal. 60(6), 829–863 (2015) DOI: 10.1080/17476933.2014.979812MathSciNetCrossRefGoogle Scholar
  49. [Uch04]
    Uchida, M.: Hörmander form and uniqueness for the Cauchy problem. Advances in Mathematics, 189, 237–245 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  50. [Vol63]
    Volevich, L.R.: A problem in linear programming stemming from differential equations. Uspekhi Mat. Nauk, 18, 3 (111), 155–162 (1963)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sabir Umarov
    • 1
  1. 1.Department of MathematicsUniversity of New HavenWest HavenUSA

Personalised recommendations