Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 41))

  • 1380 Accesses

Abstract

Random walks are used to model various random processes in different fields. In this chapter we are only interested in random walks as approximating processes of some basic driving processes of stochastic differential equations discussed in the previous chapter. There is a vast literature (see, e.g., [GK54, Don52, Bil99, Taq75, GM98-1, GM01, MS01]) devoted to approximation of various basic stochastic processes like Brownian motion, fractional Brownian motion, Lévy processes, and their time-changed counterparts. In the context of approximation, the question in what sense a random walk approximates (or converges to) an associated stochastic process becomes important. We will be interested only in the convergence in the sense of finite-dimensional distributions, which is equivalent to the locally uniform convergence of corresponding characteristic functions (see, e.g., [Bil99]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the dimension in this chapter we use the letter d, since n is overloaded.

  2. 2.

    The Gaussian density function with mean 0 and correlation matrix I evolving in time.

  3. 3.

    The set (0, 2) can be replaced by (0, 2], but this requires an additional care (see [US06]).

References

  1. Abdel-Rehim, E.A.: Explicit approximation solutions and proof of convergence of the space-time fractional advection dispersion equations. Appl. Math., 4, 1427–1440 (2013)

    Article  Google Scholar 

  2. Becker-Kern, P., Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for coupled continuous time random walks. Ann. Probab. 32 (1B), 730–756 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. 2nd ed. Wiley-Interscience publication (1999)

    Google Scholar 

  4. Donsker, M.D.: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat., 23, 277–281 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gillis, J.E., Weiss, G.H.: Expected number of distinct sites visited by a random walk with an infinite variance. J. Math. Phys. 11, 1307–1312 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley (1954)

    Google Scholar 

  7. Gorenflo, R., Abdel-Rehim, E.: Convergence of the Grünwald-Letnikov scheme for time-fractional diffusion. J. Comp. and Appl. Math. 205 871–881 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal., 1, 167–191 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Gorenflo, R., Mainardi, F.: Approximation of Lévy-Feller diffusion by random walk. ZAA, 18 (2) 231–246 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Gorenflo, R., Mainardi, F.: Random walk models approximating symmetric space-fractional diffusion processes. In Elschner, Gohberg and Silbermann (eds): Problems in Mathematical Physics (Siegfried Prössdorf Memorial Volume). Birkhäuser Verlag, Boston-Basel-Berlin, 120–145 (2001)

    Google Scholar 

  11. Gorenflo, R., Mainardi, F.: Simply and multiply scaled diffusion limits for continuous time random walks. J. of Physics. Conference Series, 7, 1–16 (2005)

    Article  Google Scholar 

  12. Gorenflo, R., Vivoli, A,: Fully discrete random walks for space-time fractional diffusion equations. Signal Processing, 83, 2411–2420 (2003)

    Article  MATH  Google Scholar 

  13. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion, Chemical Physics, 284, 521–541 (2002)

    Article  MATH  Google Scholar 

  14. Lawler, G., Limic, V.: Random walk: A Modern Introduction. Cambridge University Press (2010)

    Google Scholar 

  15. Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J., 46, 488–504 (2005)

    MathSciNet  Google Scholar 

  16. Lovász, L.: Random walks on graphs: a survey. Bolyai Society Math. Studies, Combinatorics 2, 1–46 (1993)

    Google Scholar 

  17. Meerschaert, M.M., Scheffler, H.-P.: Limit Distributions for Sums of Independent Random Vectors. Heavy Tails in Theory and Practice. John Wiley and Sons, Inc. (2001)

    MATH  Google Scholar 

  18. Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for continuous time random walks with slowly varying waiting times. Stat. Probabil. Lett. 71 (1), 15–22 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Metzler, R,. Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Metzler, R., Klafter, J.: The restaurant in the end of random walk. Physics A: Mathematical and General. 37 (31), 161–208 (2004)

    Article  MathSciNet  Google Scholar 

  21. Montroll, E.W., Weiss, G.H.: Random walk on Lattices. II. J. Math. Phys. 6 (2), 167–181 (1965)

    Article  MathSciNet  Google Scholar 

  22. Pearson, K.: On the problem of random walk. Nature, 72, 294 (1905)

    Google Scholar 

  23. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  24. Sottinen, T.: Fractional Brownian motion, random walks and binary market models. Finance and Stochastics. 5, 343–355 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Spitzer, F.: Principles of Random Walk. Springer (2001)

    Google Scholar 

  26. Taqqu, M.S.: Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31, 287–302 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  27. Umarov, S.R.: Continuous time random walk models associated with distributed order diffusion equations. Frac. Calc. Appl. Anal. 18 (3), 821–837 (2015)

    MathSciNet  Google Scholar 

  28. Umarov, S.R., Gorenflo, R.: On multi-dimensional symmetric random walk models approximating fractional diffusion processes. Frac. Calc. Appl. Anal., 8, 73–88 (2005)

    MathSciNet  Google Scholar 

  29. Umarov, S.G., Steinberg, St. Random walk models associated with distributed fractional order differential equations. IMS Lecture Notes - Monograph Series. High Dimensional Probability, 51, 117–127 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Umarov, S. (2015). Random walk approximants of mixed and time-changed Lévy processes. In: Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols. Developments in Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-20771-1_8

Download citation

Publish with us

Policies and ethics