Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 41))

  • 1388 Accesses

Abstract

Let \(\varOmega \subset \mathbb{R}^{n}\) be a bounded domain with a smooth boundary or \(\varOmega = \mathbb{R}^{n}.\) This chapter discusses well-posedness problems of general boundary value problems for pseudo-differential and differential-operator equations of the form

$$\displaystyle\begin{array}{rcl} L[u]& \equiv & \frac{\partial ^{m}u} {\partial t^{m}} +\sum _{ k=0}^{m-1}A_{ k}(t)\frac{\partial ^{k}u} {\partial t^{k}} = f(t,x),\quad t \in (T_{1},T_{2}),\ x \in \varOmega,{}\end{array}$$
(4.1)
$$\displaystyle\begin{array}{rcl} B_{k}[u]& \equiv & \sum _{j=0}^{m-1}b_{ kj}\frac{\partial ^{j}u(t_{kj},x)} {\partial t^{j}} =\varphi _{k}(x),\quad x \in \varOmega,\,k = 0,\mathop{\ldots },m - 1,{}\end{array}$$
(4.2)

where f(t, x) is defined on \((T_{1},T_{2})\times \varOmega,\) \(-\infty <T_{1} <T_{2} \leq \infty,\) and \(\varphi _{k}(x),\,x \in \varOmega,\,k = 0,\ldots,m - 1,\) are given functions; A k (t) and b kj , \(k = 0,\ldots,m - 1,\,j = 0,\ldots,m - 1,\) are operators acting on some spaces (specified below) of functions defined on Ω; and \(t_{jk} \in [T_{1},T_{2}],\,j,k = 0,\ldots,m - 1.\) For example, when \(\varOmega = \mathbb{R}^{n},\) the latter operators may act as ΨDOSS defined on the space of distributions \(\varPsi _{-G,p^{'}}^{'}(\mathbb{R}^{n})\) with an appropriate \(G \subset R^{n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity here it is assumed that t_{0} = 0.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure and Appl. Math., 12, 623–727 (1969)

    Article  MathSciNet  Google Scholar 

  2. Atakhodzhaev, M.A.: Ill-posed internal boundary value problems for the biharmonic equation. VSP, Utrecht (2002)

    Book  MATH  Google Scholar 

  3. Bacchelli, B., Bozzini, M., Rabut, C., Varas, M.: Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets. Applied and Computational Harmonic Analysis, 18, 282–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bers, L., John, F., Schechter M.: Partial Differential Equations. Interscience Publishers, New York - London - Sydney (1964)

    MATH  Google Scholar 

  5. Björken, J., Drel, S.: Relativistic Quantum Theory, V I. McGraw Hill Book Co., New York (1964)

    Google Scholar 

  6. Borok, B.M.: Uniqueness classes for the solution of a boundary problem with an infinite layer for systems of linear partial differential equations with constant coefficients. Mat. Sb., 79 (121): 2(6), 293–304 (1969)

    Google Scholar 

  7. Borok, V.M.: Correctly solvable boundary-value problems in an infinite layer for systems of linear partial differential equations. Math. USSR. Izv. 5, 193–210 (1971)

    Article  Google Scholar 

  8. Duhamel, J.M.C.: Mémoire sur la méthode générale relative au mouvement de la chaleur dans les corps solides plongés dans les milieux dont la température varie avec le temps. J. Ec. Polyt. Paris 14, Cah. 22, 20 (1833)

    Google Scholar 

  9. Edenhofer, E.: Integraldarstellung einer m-polyharmonischen Funktion, deren Funktionswerte und erste m − 1 Normalableitungen auf einer Hypersphäre gegeben sind Math. Nachr. 68, 105–113 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, B., Ji, D., Ge, W.: Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces. J. Comput. Appl. Math., 222, 351–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gårding, L.: Hyperbolic equations in the twentieth century. Seminaires et Congres, 3, 37–68 (1998)

    Google Scholar 

  12. Gorbachuk, V.I., Gorbachuk M.L.: Boundary Value Problems for Operator Differential Equations. Kluwer Academic Publishers. Netherlands (1990)

    Google Scholar 

  13. Haußmann, W., Kounchev, O.: On polyharmonic interpolation. J. Math. Anal. Appl. 331 (2), 840–849 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayman, W.K., Korenblum, B.: Representation and uniqueness theorems for polyharmonic functions. J. d’Analyse Mathématique, 60, 113–133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörmander, L.: The Analysis of Linear Partial Differential Operators, I - IV. Springer-Verlag, Berlin-Heidelberg-New-York (1983)

    Google Scholar 

  16. Lopatinskiĩ, Ya.B.: On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations. Ukrain. Mat. Zb. 5, 123–151 (1953)

    Google Scholar 

  17. Naimark, M.A.: Linear differential operators, 1,2, F. Ungar (1967) (Translated from Russian)

    Google Scholar 

  18. Napalkov, V.V.: Convolution equations in multidimensional spaces. Mathematical Notes of the Acad. Sci. USSR, 25 (5), 393 pp., Springer (1979)

    Google Scholar 

  19. Napalkov, V.V., Nuyatov, A.A.: The multipoint de la Vallée-Poussin problem for a convolution operator. Sbornik: Mathematics, 203 (2), 224–233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nazarova, M. Kh.: On weak well-posedness of certain boundary value problems generated by a singular Bessel’s operator. Uzb. Math. J. 3, 63–70 (1997) (in Russian)

    MathSciNet  Google Scholar 

  21. Petrovskii, I.G.: Selected works: Systems of partial differential equations and algebraic geometry, Part I. Gordon and Breach Publishers (1996)

    Google Scholar 

  22. Pokornyi, Yu.V.: On estimates for the Green’s function for a multipoint boundary problem. Mat. Zametki, 4 (5), 533–540 (1968)

    MathSciNet  MATH  Google Scholar 

  23. Ptashnik, B.I.: Ill-Posed Boundary Value Problems for Partial Differential Equations. Kiev (1984) (in Russian)

    Google Scholar 

  24. Pulkina, L.S.: A non-local problem with integral conditions for hyperbolic equations. Electronic Journal of Differential Equations, 45, 1–6 (1999)

    MathSciNet  Google Scholar 

  25. Render, H.: Real Bargmann spaces, Fischer decompositions and Sets of uniqueness for polyharmonic functions. Duke Math. J., 142 (2), 313–352 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Samarov, K.L.: Solution of the Cauchy problem for the Schrödinger equation for a relativistic free particle. Soviet Phys. Docl., 271 (2), 334–337 (1983)

    MathSciNet  Google Scholar 

  27. Sato, M.: Theory of Hyperfunctions, I. Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry, 8 (1), 139–193 (1959)

    Google Scholar 

  28. Sato, M.: Theory of Hyperfunctions, II. Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry, 8 (2), 387–437 (1960)

    Google Scholar 

  29. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. Lecture Notes in Mathematics, 287, Springer-Verlag, Berlin-Heidelberg-New York, 265–529 (1973)

    Google Scholar 

  30. Saydamatov, E.M.: Well-posedness of the Cauchy problem for inhomogeneous time-fractional pseudo-differential equations, Frac. Calc. Appl. Anal., 9(1), 1–16 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Saydamatov, E.M.: Well-posedness of general nonlocal nonhomogeneous boundary value problems for pseudo-differential equations with partial derivatives. Siberian Advances in Mathematics, 17 (3), 213–226 (2007)

    Article  MathSciNet  Google Scholar 

  32. Schwartz, L.: Théorie des distributions I, II. Hermann, Paris (1951)

    Google Scholar 

  33. Shapiro, Z.Ya.: On general boundary value problems of elliptic type. Isz. Akad. Nauk, Math. Ser. 17, 539–562 (1953)

    Google Scholar 

  34. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer (2001)

    Google Scholar 

  35. Tikhonov, A.N., Samarskij, A.A.: Equations of Mathematical Physics. Pergamon-Press, New York (1963)

    MATH  Google Scholar 

  36. Treves, F.: Introduction to Pseudo-Differential and Fourier Integral Operators. Plenum Publishing Co., New York (1980)

    Book  Google Scholar 

  37. Tskhovrebadze, G.D.: On a multipoint boundary value problem for linear ordinary differential equations with singularities. Archivum Mathematicum, 30 (3), 171–206 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Umarov, S.R.: Nonlocal boundary value problems for pseudo-differential and differential operator equations II. Differ. Equations, 34, 374–381 (1988)

    MathSciNet  Google Scholar 

  39. Vladimirov, V.S.: Generalized Functions in Mathematical Physics. Mir Publishers, Moscow (1979)

    Google Scholar 

  40. Zhang, H.-E.: Multiple positive solutions of nonlinear BVPs for differential systems involving integral conditions. Boundary Value Problems, 6, 13 pp. (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Umarov, S. (2015). Boundary value problems for pseudo-differential equations with singular symbols. In: Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols. Developments in Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-20771-1_4

Download citation

Publish with us

Policies and ethics