Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 41))

Abstract

Fractional order differential equations are an efficient tool to model various processes arising in science and engineering. Fractional models adequately reflect subtle internal properties, such as memory or hereditary properties, of complex processes that the classical integer order models neglect. In this chapter we will discuss the theoretical background of fractional modeling, that is the fractional calculus, including recent developments - distributed and variable fractional order differential operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first existing documented record on fractional derivatives goes back to year 1695. Leibniz in his letter (dated September 30, 1695) to L’Hôpital wrote on the derivative of order 1/2 of the function f(t) = t.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  2. Andries, E., Umarov, S.R., Steinberg, St.: Monte Carlo random walk simulations based on distributed order differential equations with applications to cell biology. Frac. Calc. Appl. Anal., 9 (4), 351–369 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Bagley, R.L., Torvic P.J.: On the existence of the order domain and the solution of distributed order equations I, II. Int. J. Appl. Math. 2, 865–882, 965–987 (2000)

    MATH  Google Scholar 

  4. Balakrishnan, A.V.: Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 10 (2), 419–437 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caputo M.: Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. R. Astr. Soc., 13, 529–539 (1967)

    Article  Google Scholar 

  6. Caputo M.: Elasticitá e Dissipazione, Zanichelli, Bologna (1969)

    Google Scholar 

  7. Caputo, M.: Mean fractional order derivatives. Differential equations and filters. Annals Univ. Ferrara - Sez. VII - SC. Mat., 16, 73–84 (1995)

    MathSciNet  Google Scholar 

  8. Caputo, M.: Distributed order differential equations modeling dielectric induction and diffusion. Fract. Calc. Appl. Anal., 4, 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar V.Yu.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal., 6, 259–279 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Chechkin, A.V., Gorenflo, R., Sokolov I.M.: Fractional diffusion in inhomogeneous media. J. Physics. A: Math. Gen., 38, 679–684 (2005)

    Article  MathSciNet  Google Scholar 

  11. Chechkin, A.V., Sokolov, I.M., Klafter, J.: Natural and modified forms of distributed order fractional diffusion equations. J. Klafter, S.C. Lim, R. Metzler (eds): Fractional Dynamics: Recent Advances. Singapore: World Scientific, Ch. 5, 107–127 (2011)

    Google Scholar 

  12. Djrbashian M.M.: Integral Transforms and Representations of Functions in the Complex Plane. Nauka, Moscow (1966) (in Russian)

    Google Scholar 

  13. Dunford, N., Schwartz, J.T.: Linear Operators III: Spectral Operators. Wiley-Interscience. NY-London-Sydney-Toronto (1988)

    Google Scholar 

  14. Fugére, J., Gaboury, S., Tremblay, R.: Leibniz rules and integral analogues for fractional derivatives via a new transformation formula. Bulletin of Math. Anal. Appl. 4 (2), 72–82 (2012)

    Google Scholar 

  15. Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys J. 68 (1), 46–53 (1995)

    Article  Google Scholar 

  16. Gorenflo, R.: Fractional calculus: some numerical methods. In Carpinteri, A., Mainardi, F. (eds): Fractals and Fractional Calculus in Continuum Mechanics. Springer Verlag, Wien and New York 277–290 (1997)

    Google Scholar 

  17. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In Carpinteri, A., Mainardi, F. (eds): Fractals and Fractional Calculus in Continuum Mechanics. Springer Verlag, Wien and New York 223–276 (1997)

    Google Scholar 

  18. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion, Chemical Physics, 284, 521–541 (2002)

    Article  Google Scholar 

  19. Gorenflo, R., Kilbas, A., Mainardi, F., Rogozin, S.V.; Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer (2014)

    MATH  Google Scholar 

  20. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math., 51 pp (2011)

    Google Scholar 

  21. Hilfer R. (ed): Applications Of Fractional Calculus In Physics. World Scientific (2000)

    Google Scholar 

  22. Hoh, W.: Pseudo-differential operators with negative definite symbols of variable order. Rev. Mat. Iberoam, 16 (2), 219–241 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jacob, N., Leopold, H.-G.: Pseudo differential operators with variable order of differentiation generating Feller semigroups. Integr. Equat. Oper. Th., 17, 544–553 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kazemipour, S.A., Ansari, A., Neyrameh, A.: Explicit solution of space-time fractional Klein-Gordon equation of distributed order via the Fox H-functions. M. East J. Sci. Res. 6 (6), 647–656 (2010)

    Google Scholar 

  25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory And Applications of Fractional Differential Equations. Elsevier (2006)

    Google Scholar 

  26. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman Sci. & Techn., Harlow and J. Wiley & Sons, New York (1994)

    Google Scholar 

  27. Klass, D.L., Martinek, T.W.: Electroviscous fluids. I. Rheological properties. J. Appl. Phys., 38 (1), 67–74 (1967)

    Google Scholar 

  28. Kochubey, A. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. and Appl. 340 (1), 252–281 (2008)

    Article  MathSciNet  Google Scholar 

  29. Komatsu, H.: Fractional powers of operators. Pacific J. Math. 19(2), 285–346 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Letnikov, A.V.: The theory of differentiation of arbitrary power. Mat. Sbornik 3, 1–68 (1968) (in Russian)

    Google Scholar 

  31. Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J., 46, 488–504 (2005)

    MathSciNet  Google Scholar 

  32. Lorenzo, C.F., Hartley T.T.: Variable order and distributed order fractional operators. Nonlinear Dynamics 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. Imperial College Press (2010)

    Google Scholar 

  34. Meerschaert, M.M., Scheffler, H.-P.: Stochastic model for ultraslow diffusion. Stochastic professes and their applications, 116 (9), 1215–1235 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Metzler, R,. Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miller, K.C., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, Inc., New York (1993)

    MATH  Google Scholar 

  37. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Acad. Press, Dover Publications, New York - London (1974)

    Google Scholar 

  38. Osler, T.J.: A further extension of the Leibniz rule to fractional derivatives and its relation to Parseval’s formula. SIAM J. Math. Anal. 3, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, V 198. Academic Press, San Diego, Boston (1999)

    Google Scholar 

  40. Rubin, B.: Fractional Integrals and Potentials. Pitman Monographs and Surveys in Pure and Applied Math., 82, Longman (1996)

    Google Scholar 

  41. Samko, S.G.: Fractional integration and differentiation of variable order. Analysis Mathematica, 21, 213–236 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms and Special Functions, 1 (4), 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York and London (1993)

    MATH  Google Scholar 

  44. Saxton, M.J.: Anomalous Subdiffusion in Fluorescence Photobleaching Recovery: A Monte Carlo Study. Biophys. J., 81(4), 2226–2240 (2001)

    Article  Google Scholar 

  45. Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Ann. Rev. Biophys. Biomol. Struct., 26, 373–399 (1997)

    Article  Google Scholar 

  46. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica (2004)

    Google Scholar 

  47. Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Special Topics 193, 185–192 (2011)

    Article  Google Scholar 

  48. Umarov, S.R., Gorenflo, R. The Cauchy and multipoint problem for distributed order fractional differential equations. ZAA, 24, 449–466 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Umarov, S.G., Steinberg, St. Random walk models associated with distributed fractional order differential equations. IMS Lecture Notes - Monograph Series. High Dimensional Probability, 51, 117–127 (2006)

    Article  MathSciNet  Google Scholar 

  50. Umarov, S.R., Steinberg, St.: Variable order differential equations with piecewise constant order-function and diffusion with changing modes. ZAA, 28 (4), 131–150 (2009)

    MathSciNet  Google Scholar 

  51. Valerio, D., Sa-da Costa, J.: Variable-order fractional derivatives and their numerical approximations I - real orders. Signal processing, 91 (3), 470–483 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Physics Reports, 371, 461–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Umarov, S. (2015). Fractional calculus and fractional order operators. In: Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols. Developments in Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-20771-1_3

Download citation

Publish with us

Policies and ethics