Advertisement

Fractional calculus and fractional order operators

  • Sabir Umarov
Part of the Developments in Mathematics book series (DEVM, volume 41)

Abstract

Fractional order differential equations are an efficient tool to model various processes arising in science and engineering. Fractional models adequately reflect subtle internal properties, such as memory or hereditary properties, of complex processes that the classical integer order models neglect. In this chapter we will discuss the theoretical background of fractional modeling, that is the fractional calculus, including recent developments - distributed and variable fractional order differential operators.

References

  1. [AS64]
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)zbMATHGoogle Scholar
  2. [AUS06]
    Andries, E., Umarov, S.R., Steinberg, St.: Monte Carlo random walk simulations based on distributed order differential equations with applications to cell biology. Frac. Calc. Appl. Anal., 9 (4), 351–369 (2006)MathSciNetzbMATHGoogle Scholar
  3. [BT00]
    Bagley, R.L., Torvic P.J.: On the existence of the order domain and the solution of distributed order equations I, II. Int. J. Appl. Math. 2, 865–882, 965–987 (2000)zbMATHGoogle Scholar
  4. [Bal60]
    Balakrishnan, A.V.: Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 10 (2), 419–437 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Cap67]
    Caputo M.: Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. R. Astr. Soc., 13, 529–539 (1967)CrossRefGoogle Scholar
  6. [Cap69]
    Caputo M.: Elasticitá e Dissipazione, Zanichelli, Bologna (1969)Google Scholar
  7. [Cap95]
    Caputo, M.: Mean fractional order derivatives. Differential equations and filters. Annals Univ. Ferrara - Sez. VII - SC. Mat., 16, 73–84 (1995)MathSciNetGoogle Scholar
  8. [Cap01]
    Caputo, M.: Distributed order differential equations modeling dielectric induction and diffusion. Fract. Calc. Appl. Anal., 4, 421–442 (2001)MathSciNetzbMATHGoogle Scholar
  9. [CGSG03]
    Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar V.Yu.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal., 6, 259–279 (2003)MathSciNetzbMATHGoogle Scholar
  10. [CGS05]
    Chechkin, A.V., Gorenflo, R., Sokolov I.M.: Fractional diffusion in inhomogeneous media. J. Physics. A: Math. Gen., 38, 679–684 (2005)MathSciNetCrossRefGoogle Scholar
  11. [CSK11]
    Chechkin, A.V., Sokolov, I.M., Klafter, J.: Natural and modified forms of distributed order fractional diffusion equations. J. Klafter, S.C. Lim, R. Metzler (eds): Fractional Dynamics: Recent Advances. Singapore: World Scientific, Ch. 5, 107–127 (2011)Google Scholar
  12. [Djr66]
    Djrbashian M.M.: Integral Transforms and Representations of Functions in the Complex Plane. Nauka, Moscow (1966) (in Russian)Google Scholar
  13. [DS88]
    Dunford, N., Schwartz, J.T.: Linear Operators III: Spectral Operators. Wiley-Interscience. NY-London-Sydney-Toronto (1988)Google Scholar
  14. [FGT12]
    Fugére, J., Gaboury, S., Tremblay, R.: Leibniz rules and integral analogues for fractional derivatives via a new transformation formula. Bulletin of Math. Anal. Appl. 4 (2), 72–82 (2012)Google Scholar
  15. [GN95]
    Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys J. 68 (1), 46–53 (1995)CrossRefGoogle Scholar
  16. [Gor97]
    Gorenflo, R.: Fractional calculus: some numerical methods. In Carpinteri, A., Mainardi, F. (eds): Fractals and Fractional Calculus in Continuum Mechanics. Springer Verlag, Wien and New York 277–290 (1997)Google Scholar
  17. [GM97]
    Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In Carpinteri, A., Mainardi, F. (eds): Fractals and Fractional Calculus in Continuum Mechanics. Springer Verlag, Wien and New York 223–276 (1997)Google Scholar
  18. [GMM02]
    Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion, Chemical Physics, 284, 521–541 (2002)CrossRefGoogle Scholar
  19. [GK14]
    Gorenflo, R., Kilbas, A., Mainardi, F., Rogozin, S.V.; Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer (2014)zbMATHGoogle Scholar
  20. [HMS11]
    Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math., 51 pp (2011)Google Scholar
  21. [Hil00]
    Hilfer R. (ed): Applications Of Fractional Calculus In Physics. World Scientific (2000)Google Scholar
  22. [Hoh00]
    Hoh, W.: Pseudo-differential operators with negative definite symbols of variable order. Rev. Mat. Iberoam, 16 (2), 219–241 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [JL93]
    Jacob, N., Leopold, H.-G.: Pseudo differential operators with variable order of differentiation generating Feller semigroups. Integr. Equat. Oper. Th., 17, 544–553 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [KAN10]
    Kazemipour, S.A., Ansari, A., Neyrameh, A.: Explicit solution of space-time fractional Klein-Gordon equation of distributed order via the Fox H-functions. M. East J. Sci. Res. 6 (6), 647–656 (2010)Google Scholar
  25. [KST06]
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory And Applications of Fractional Differential Equations. Elsevier (2006)Google Scholar
  26. [Kir94]
    Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman Sci. & Techn., Harlow and J. Wiley & Sons, New York (1994)Google Scholar
  27. [KM67]
    Klass, D.L., Martinek, T.W.: Electroviscous fluids. I. Rheological properties. J. Appl. Phys., 38 (1), 67–74 (1967)Google Scholar
  28. [Koc08]
    Kochubey, A. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. and Appl. 340 (1), 252–281 (2008)MathSciNetCrossRefGoogle Scholar
  29. [Kom66]
    Komatsu, H.: Fractional powers of operators. Pacific J. Math. 19(2), 285–346 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Let68]
    Letnikov, A.V.: The theory of differentiation of arbitrary power. Mat. Sbornik 3, 1–68 (1968) (in Russian)Google Scholar
  31. [LSAT05]
    Liu, F., Shen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J., 46, 488–504 (2005)MathSciNetGoogle Scholar
  32. [LH02]
    Lorenzo, C.F., Hartley T.T.: Variable order and distributed order fractional operators. Nonlinear Dynamics 29, 57–98 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [Mai10]
    Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. Imperial College Press (2010)Google Scholar
  34. [MS06]
    Meerschaert, M.M., Scheffler, H.-P.: Stochastic model for ultraslow diffusion. Stochastic professes and their applications, 116 (9), 1215–1235 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. [MK00]
    Metzler, R,. Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339, 1–77 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  36. [MR93]
    Miller, K.C., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, Inc., New York (1993)zbMATHGoogle Scholar
  37. [OS74]
    Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Acad. Press, Dover Publications, New York - London (1974)Google Scholar
  38. [Osl72]
    Osler, T.J.: A further extension of the Leibniz rule to fractional derivatives and its relation to Parseval’s formula. SIAM J. Math. Anal. 3, 1–16 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  39. [Pod99]
    Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, V 198. Academic Press, San Diego, Boston (1999)Google Scholar
  40. [Rub96]
    Rubin, B.: Fractional Integrals and Potentials. Pitman Monographs and Surveys in Pure and Applied Math., 82, Longman (1996)Google Scholar
  41. [Sam95]
    Samko, S.G.: Fractional integration and differentiation of variable order. Analysis Mathematica, 21, 213–236 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  42. [SR93]
    Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms and Special Functions, 1 (4), 277–300 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  43. [SKM87]
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York and London (1993)zbMATHGoogle Scholar
  44. [Sax01]
    Saxton, M.J.: Anomalous Subdiffusion in Fluorescence Photobleaching Recovery: A Monte Carlo Study. Biophys. J., 81(4), 2226–2240 (2001)CrossRefGoogle Scholar
  45. [SJ97]
    Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Ann. Rev. Biophys. Biomol. Struct., 26, 373–399 (1997)CrossRefGoogle Scholar
  46. [SCK04]
    Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica (2004)Google Scholar
  47. [SCWC11]
    Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Special Topics 193, 185–192 (2011)CrossRefGoogle Scholar
  48. [UG05-2]
    Umarov, S.R., Gorenflo, R. The Cauchy and multipoint problem for distributed order fractional differential equations. ZAA, 24, 449–466 (2005)MathSciNetzbMATHGoogle Scholar
  49. [US06]
    Umarov, S.G., Steinberg, St. Random walk models associated with distributed fractional order differential equations. IMS Lecture Notes - Monograph Series. High Dimensional Probability, 51, 117–127 (2006)MathSciNetCrossRefGoogle Scholar
  50. [US09]
    Umarov, S.R., Steinberg, St.: Variable order differential equations with piecewise constant order-function and diffusion with changing modes. ZAA, 28 (4), 131–150 (2009)MathSciNetGoogle Scholar
  51. [VC11]
    Valerio, D., Sa-da Costa, J.: Variable-order fractional derivatives and their numerical approximations I - real orders. Signal processing, 91 (3), 470–483 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  52. [Zas02]
    Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Physics Reports, 371, 461–580 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sabir Umarov
    • 1
  1. 1.Department of MathematicsUniversity of New HavenWest HavenUSA

Personalised recommendations