Advertisement

Function spaces and distributions

  • Sabir Umarov
Part of the Developments in Mathematics book series (DEVM, volume 41)

Abstract

This chapter is devoted to function and distribution spaces. We first recall definitions of some well-known classical function and distribution spaces, simultaneously introducing the terminology and notations used in this book. Then we introduce (see Section 1.10) a new class of test functions and the corresponding space of distributions (generalized functions), which play an important role in the theory of pseudo-differential operators with singular symbols introduced in Chapter 2 By singular symbols we mean, if not otherwise assumed, symbols singular in dual variables.

References

  1. [AS64]
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)zbMATHGoogle Scholar
  2. [BL76]
    Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer (1976)Google Scholar
  3. [BIN75]
    Besov, O.B., Il’in, V.P., Nikolskii, S.M.: Integral Representation of Functions and Embedding Theorems I, II. Willey, New York (1979)Google Scholar
  4. [BL81]
    Brezis, H., Lions, J.L.: Nonlinear Partial Differential Equations and Their Applications. Chapman & Hall (1981)Google Scholar
  5. [Dub82]
    Dubinskii, Yu.A.: The algebra of pseudo-differential operators with analytic symbols and its applications to mathematical physics. Russ. Math. Surv., 37, 109–153 (1982)CrossRefGoogle Scholar
  6. [Fef71]
    Fefferman, Ch.: The multiplier theorem for the ball. The Annals of Mathematics, 94 (2), 330–336 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [GS53]
    Gel’fand I.M., Shilov, G.E.: Fourier transforms of rapidly growing functions and questions of uniqueness of the solution of Cauchy’s problem. Usp. Mat. Nauk. 8 (6), 3–54 (1953)zbMATHGoogle Scholar
  8. [GT83]
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin (1977)CrossRefzbMATHGoogle Scholar
  9. [Gra10]
    Graf, U.: Introduction to Hyperfunctions and Their Integral Transformations. Birkhäuser, Basel (2010)CrossRefGoogle Scholar
  10. [Hor83]
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, I - IV. Springer-Verlag, Berlin-Heidelberg-New-York (1983)Google Scholar
  11. [Kan72]
    Kaneko, A.: Representation of hyperfunctions by measures and some of its applications. J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 19, 321–352 (1972)Google Scholar
  12. [Leb01]
    Lebesgue, H.: Sur une généralisation de l’intégrale définie. Comptes Rend. l’Acad. Sci., 132, 1025–1028 (1901)zbMATHGoogle Scholar
  13. [Liz63]
    Lizorkin P.I.: Generalized Liouville differentiation and functional spaces L p r(E n). Embedding theorems. Mat. Sb. 60, 325–353 (1963) (in Russian)MathSciNetGoogle Scholar
  14. [Liz67]
    Lizorkin, P.I.: Multipliers of Fourier integrals in the spaces L p. Proc. Steklov Inst. Math. 89, 269–290 (1967)zbMATHGoogle Scholar
  15. [Liz69]
    Lizorkin, P.I.: Generalized Liouville differentiation and the method of multipliers in the theory of embeddings of classes of differentiable functions. Proc. Steklov Inst. Math. 105, 105–202 (1969)Google Scholar
  16. [Mih56]
    Mikhlin, S.G.: On the multipliers of Fourier integrals, Dokl. Akad. Nauk. 109, 701–703 (1956)(in Russian)zbMATHGoogle Scholar
  17. [Nik77]
    Nikolskii, S.M.: Approximation of Functions of Several Variables and Embedding Theorems. Springer-Ferlag (1975)Google Scholar
  18. [Pee76]
    Peetre, J.: New thoughts on Besov spaces. Duke Univ. Math. Series, Duke Univ., Durham (1976)Google Scholar
  19. [RS80]
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press (1980)zbMATHGoogle Scholar
  20. [Ri10]
    Riesz, F.: Untersuchungen über Systeme integrierbarer Funktionen. Mathematische Annalen 69 (4), 449–497 (1910)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [R64]
    Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press (1964)Google Scholar
  22. [Sam77]
    Samko, S.G.: Fundamental functions vanishing on a given set and division by functions. Mathematical notes, 21 (5), 379–386 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Sam82]
    Samko, S.G.: Denseness of Lizorkin-type spaces Φ V in L p. Mat. Notes, 31, 432–437 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Sam95]
    Samko, S.G.: Denseness of the spaces Φ V of Lizorkin type in the mixed in L p( n)-spaces. Stud. Math. 113, 199–210 (1995)MathSciNetzbMATHGoogle Scholar
  25. [Sat59]
    Sato, M.: Theory of Hyperfunctions, I. Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry, 8 (1), 139–193 (1959)Google Scholar
  26. [Sat60]
    Sato, M.: Theory of Hyperfunctions, II. Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry, 8 (2), 387–437 (1960)Google Scholar
  27. [SW66]
    Schaefer, H.H., Wolff, M.P.: Topological vector spaces, 2nd ed. Springer (1999)Google Scholar
  28. [Sch51]
    Schwartz, L.: Théorie des distributions I, II. Hermann, Paris (1951)Google Scholar
  29. [Sob35]
    Sobolev, S.L.: Le probléme de Cauchy dans l’espace des fonctionelles (Russian and French). Dokl. Akad. Nauk SSSR (Comptes Rend. l’Acad. Sci. URSS) 3 (8), 7 (67), 291–294 (1935)Google Scholar
  30. [Sob36]
    Sobolev, S.L.: Méthode nouvelle á resoudre le probléme de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. 1 (43), 39–72 (1936)zbMATHGoogle Scholar
  31. [Sob38]
    Sobolev, S.L.: On a theorem in functional analysis. Mat. Sb. 4 (46), 471–497 (1938)(Russian) (Engl. transl.: Amer. Math. Soc. Transl. 34 (2), 39–68 (1963))Google Scholar
  32. [Sob50]
    Sobolev, S.L.: Some applications of functional analysis in mathematical physics (Russian). 1st ed.: Leningr. Goz. Univ., Leningrad (1950) 3rd enlarged ed.: Izd. Nauka, Moskva (1988) (Engl. transl.: Amer. Math. Soc., Providence, R. I. (1963))Google Scholar
  33. [Sob74]
    Sobolev, S.L.: Introduction to the theory of cubature formulas. Nauka, Moscow (1974)(in Russian) (Engl. transl: Cubature formulas and modern analysis: An introduction. Gordon and Breach (1992))Google Scholar
  34. [Ste70]
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970)Google Scholar
  35. [Sut86]
    Sutradhar, B.C.: On the characteristic function of multivariate Student t-distribution. The Canadian Journal of Statistics (La Revue Canadienne de Statistique), 14 (4), 329–337 (1986)Google Scholar
  36. [Tay81]
    Taylor, M.: Pseudo differential operators. Prinston University Press (1981)Google Scholar
  37. [Tre80]
    Treves, F.: Introduction to Pseudo-Differential and Fourier Integral Operators. Plenum Publishing Co., New York (1980)Google Scholar
  38. [Tri77]
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Birkhäuser, Basel (1977)Google Scholar
  39. [Tri83]
    Triebel, H.: Theory of Function Spaces. Leipzig, Birkhäuser Verlag, Basel-Boston-Stuttgart (1983)CrossRefGoogle Scholar
  40. [Uma97]
    Umarov, S.R.: Nonlocal boundary value problems for pseudo-differential and differential operator equations I. Differ. Equations, 33, 831–840 (1997)MathSciNetzbMATHGoogle Scholar
  41. [Uma98]
    Umarov, S.R.: Nonlocal boundary value problems for pseudo-differential and differential operator equations II. Differ. Equations, 34, 374–381 (1988)MathSciNetGoogle Scholar
  42. [Vla79]
    Vladimirov, V.S.: Generalized Functions in Mathematical Physics. Mir Publishers, Moscow (1979)Google Scholar
  43. [Zyg45]
    Zygmund, A.: Smooth functions. Duke Math. J. 12 (1), 47–76 (1945)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sabir Umarov
    • 1
  1. 1.Department of MathematicsUniversity of New HavenWest HavenUSA

Personalised recommendations