Skip to main content

Physical Properties of Gold Nanostars

  • Chapter

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

The most relevant applications of gold nanostars are based on their physical properties. These arise primarily from resonant oscillations of the conduction electrons of the nanoparticles called localized surface plasmon resonances (LSPR). In this chapter an introduction to the physical origin of the LSPR and the way the nano-environment affect them are provided. Finally the implication of the LSPR of gold nanostar surface-enhanced Raman scattering is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feng H et al (2007) Plasmon resonances of gold nanostars. Nano Lett 7:729–732

    Article  Google Scholar 

  2. Rodríguez-Lorenzo L et al (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131:4616–4618

    Article  Google Scholar 

  3. Hrelescu C et al (2009) Single gold nanostars enhance Raman scattering. Appl Phys Lett 94:153113

    Article  Google Scholar 

  4. Dondapati S et al (2010) Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4:6318–6322

    Article  Google Scholar 

  5. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  Google Scholar 

  6. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  Google Scholar 

  7. Mie G (1908) Contributions to the optics of turbid media, especially colloidal metal solutions. Ann Phys 25:377–445

    Article  Google Scholar 

  8. Comin A, Manna L (2014) New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev 43:3957–3975

    Article  Google Scholar 

  9. Sherry LJ et al (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  Google Scholar 

  10. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-depended nanoparticles optics. J Phys Chem B 105:5599–5611

    Article  Google Scholar 

  11. Jensen TR et al (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra. J Phys Chem 104:10549–10556

    Article  Google Scholar 

  12. Klar T et al (1998) Surface Plasmon resonances of in single metallic nanoparticles. Phys Rev Lett 80:4249–4252

    Article  Google Scholar 

  13. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmons subwavelength optics. Nature 424:824–830

    Article  Google Scholar 

  14. Ghosh SK et al (2004) Solvents and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108:13963–13971

    Article  Google Scholar 

  15. Nehl CL, Hafner JF (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18:2415–2419

    Article  Google Scholar 

  16. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem 111:3806–3819

    Google Scholar 

  17. Oldenburg SJ et al (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  Google Scholar 

  18. Chen JY et al (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261

    Article  Google Scholar 

  19. Iglesias-Sanches A et al (2006) Synthesis and optical control of gold nanodecahedra with size control. Adv Mater 18:2529–2534

    Article  Google Scholar 

  20. Malinsky MD et al (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem 105:2343–2350

    Article  Google Scholar 

  21. Hilger A et al (2000) Surface and interface effects in the optical properties of silver nanoparticles. Eur Phys J D Atom Mol Opt Phys 10:115–118

    Google Scholar 

  22. Messersmith RE et al (2013) Using the localized surface plasmon resonance of gold nanoparticles to monitor lipid membrane assembly and protein binding. J Phys Chem C 117:26725–26733

    Article  Google Scholar 

  23. Bantz KC et al (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13:11551–11567

    Article  Google Scholar 

  24. Albercht MG, Greighton GA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  Google Scholar 

  25. Schlucker S (2014) Surface enhanced Raman spectroscopy: concept and chemical applications. Angew Chem 53:4756–4795

    Article  Google Scholar 

  26. Shahbazyan TV, Stoskman MI (eds) (2014) Plasmonics: theory and application. Springer, London

    Google Scholar 

  27. Lu H et al (2011) Seed-mediated plasmon-driven regrowth of silver nanodecahedrons. Plasmonics 7:167–173

    Article  Google Scholar 

  28. Nehl CL, Liao HW, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688

    Article  Google Scholar 

  29. Bakr OM, Wunsch BH, Stellaci F (2006) High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem Mater 18:4894–4901

    Article  Google Scholar 

  30. Hao F et al (2007) Plasmon resonance of gold nanostars. Nano Lett 7:729–732

    Article  Google Scholar 

  31. Oubre C, Nordlander P (2005) Finite difference time-domain studies of optical properties of nanoshell dimers. J Phys Chem 109:10042–10051

    Article  Google Scholar 

  32. Prodan E et al (2003) A hybridization model for the Plasmon responses of complex nanostructures. Science 302:419–422

    Article  Google Scholar 

  33. Guerrero-Martinez A et al (2011) Nanostars shine bright to you: colloidal synthesis, properties and application of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 16:118–127

    Article  Google Scholar 

  34. Nelayah J et al (2010) Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms. Nano Lett 10:402–407

    Article  Google Scholar 

  35. Hao E et al (2004) Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett 4:327–330

    Article  Google Scholar 

  36. Casu A, Cabrini E et al (2012) Controlled synthesis of gold nanostars by using zwitterionic surfactant. Chem Eur J 18:9381–9390

    Article  Google Scholar 

  37. Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C Nanometer Interfaces 112:18849–18859

    Article  Google Scholar 

  38. Pallavicini P, Dona A et al (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267

    Article  Google Scholar 

  39. Nehl CL, Liao H, Hafner JF (2006) Plasmon resonant molecular sensing with single gold nanostars. Proc SPIE 6323:63230G–63231G

    Article  Google Scholar 

  40. Oliveros-Rodriguez R, Sanchez-Gil A (2011) Gold nanostars as thermoplasmonic nanoparticles for optical heating. Optics express 20: 621–626 optical hyperthermia. Nano Lett 13:2004–2010

    Google Scholar 

  41. Kedia A, Kumar PS (2013) Gold nanostars reshaping and plasmon tuning mechanism. AIP Conf Proc 232:1512

    Google Scholar 

  42. Rodriguez-Lorenzo L et al (2012) Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. J Mater Chem 21:11544–11549

    Article  Google Scholar 

  43. Das P et al (2013) Local electronic beam excitation and substrate effect on the plasmonic response of single gold nanostars. Nanotechnology 24:405704

    Article  Google Scholar 

  44. Kumar PS et al (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19:1–5

    Google Scholar 

  45. Barbosa S et al (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26:14943–14950

    Article  Google Scholar 

  46. Chen H et al (2008) Shape- and size- dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  Google Scholar 

  47. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  Google Scholar 

  48. Dignam MJ, Moscovits M (1973) Influence of surface roughness on the transmission and reflectance spectra of adsorbed species. J Chem Soc Faraday Trans 2(69):65–78

    Article  Google Scholar 

  49. Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates. From single-molecule Raman spectroscopy to ultrasensitive probing in living cells. Acc Chem Res 39:443–450

    Article  Google Scholar 

  50. Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085–7107

    Article  Google Scholar 

  51. Lee SJ et al (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of SERS. J Phys Chem 111:17985–17988

    Google Scholar 

  52. Myroshnychenko V et al (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805

    Article  Google Scholar 

  53. Brus L (2008) Noble metal nanocrystals: plasmon electron transfer photochemistry and single molecule raman spectroscopy. Acc Chem Res 41:1742–1749

    Article  Google Scholar 

  54. Rodriguez-Lorenzo L et al (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114:7336–7340

    Article  Google Scholar 

  55. Allgeyer ES et al (2009) Optical signal comparison of single fluorescent molecules and Raman active gold nanostars. Nano Lett 9:3816–3819

    Article  Google Scholar 

  56. Esenturk NE, Walker ARH (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40:86–91

    Article  Google Scholar 

  57. Xu H et al (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  Google Scholar 

  58. Pazos-Perez N et al (2010) Growth of sharp tips on gold nanowires leads to increased SERS activity. J Phys Chem Lett 1:24–27

    Article  Google Scholar 

  59. Osinkina L et al (2013) Synthesis of gold nanostar arrays as reliable, large-scale homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy. J Phys Chem 117:22198–22202

    Google Scholar 

  60. Pei Y et al (2013) Highly-sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold-nanostars and aggregates of gold nanostars. J Mater Chem B 1:3992–3998

    Article  Google Scholar 

  61. Shiohara A et al (2014) Solution processed/polydimethylsiloxane/gold nanostars flexible substrates for plasmonic sensing. Nanoscale 6:9817

    Article  Google Scholar 

  62. Rodriguez-Lorenzo L et al (2011) Intracellular mapping with SERS-encoded gold nanostars. Integr Biol 3:922–926

    Article  Google Scholar 

  63. Yuan H et al (2013) Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44:234–239

    Article  Google Scholar 

  64. Melnikau D et al (2013) Strong plasmon exciton coupling in a hybrid system of gold nanostars and J-aggregates. Nanoscale Res Lett 8:134

    Article  Google Scholar 

  65. Esenturk NE, Walker ARH (2013) Gold nanosrars@iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J Nanopart Res 15:1364

    Article  Google Scholar 

  66. Geerc C et al (2014) Visualisation of gold/silver nanostars in wood by surface enhanced Raman spectroscopy. In: Proceedings IRG annual meeting, IRG/WP 14-30653

    Google Scholar 

  67. Su Q et al (2011) A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars. ACS Appl Mater Interface 3:1873–1879

    Article  Google Scholar 

  68. Hoon KN, Joon LS, Moskovits M (2011) Reversible tuning of SERS hot spots with aptamers. Adv Mater 23:4152–4156

    Article  Google Scholar 

  69. Yuling W, Kyuwan L, Irudayaraj J (2010) SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Comm 46:613–615

    Article  Google Scholar 

  70. Shiohara A et al (2015) Plasmon modes and hot spots in gold nanostars-satellite clusters. J Phys Chem B 119(20):10836–10843. doi:10.1021/jp509953f

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Chirico .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chirico, G., Pallavicini, P., Borzenkov, M. (2015). Physical Properties of Gold Nanostars. In: Gold Nanostars. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-20768-1_2

Download citation

Publish with us

Policies and ethics