Skip to main content

Gold Nanostar Synthesis and Functionalization with Organic Molecules

  • Chapter

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

This chapter is devoted to the synthesis and functionalization of gold nanostars. The physical-chemical characterization and singular features of gold nanostars with respect to other types of gold nanoparticles are provided. Various methods of GNS synthesis as well as of the functionalization of GNS with PEG, organic dyes, and bioactive compounds are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262

    Google Scholar 

  2. Frens G (1971) Controlled nucleation for the regulation of the particle size in monodisperse gold suspension. Nat Phys Sci 241:20–22

    Google Scholar 

  3. Hostetler M et al (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30

    Google Scholar 

  4. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Google Scholar 

  5. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  6. Kimling J et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem 110:15700–15707

    Google Scholar 

  7. Pong BK et al (2007) New insights on the nanoparticles growth mechanism in the citrate reduction of gold (III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem 111:6281–6287

    Google Scholar 

  8. Polte J et al (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301

    Google Scholar 

  9. Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136

    Google Scholar 

  10. Brust M et al (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802

    Google Scholar 

  11. Brust M et al (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Commun 16:1655–1656

    Google Scholar 

  12. Templeton AC, Wuelfing WP, Murray WP (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Google Scholar 

  13. Sardar R, Shumaker-Parry JS (2009) 9-BBN induced synthesis of nearly monodispersed ω-functionalized alkylthiol stabilized gold nanoparticles. Chem Mater 21:1167–1169

    Google Scholar 

  14. Mallick K, Wang ZL, Pal T (2001) Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photothermal approach of size-controlled synthesis. J Photochem Photobiol A 140:75–80

    Google Scholar 

  15. Kumar SP et al (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19:015606

    Google Scholar 

  16. Burda C et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Google Scholar 

  17. Casu A, Cabrini E et al (2012) Controlled synthesis of gold nanostars by using zwitterionic surfactant. Chemistry 18:9381–9390

    Google Scholar 

  18. Guerro-Martinez A et al (2011) Nanostars shine bright to you: colloidal synthesis, properties and application of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 16:118–127

    Google Scholar 

  19. Alvarez-Puebla R, Liz-Marzan LM, Garcia De Abajo FJ (2010) Light concentration at the nanometer scale. J Phys Chem Lett 1:2428–2434

    Google Scholar 

  20. Freddi S, Sironi L et al (2013) A molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett 13:2004–2010

    Google Scholar 

  21. Hrelesku C et al (2009) Single gold nanostars enhance Raman scattering. Appl Phys Lett 94:1–3

    Google Scholar 

  22. Gasser U, Weeks ER, Schofield A, Pusey PN, Weitz DA (2001) Real-space imaging of nucleation and growth in colloidal crystallization. Science 292:258–262

    Google Scholar 

  23. Kawamura G, Nogami M (2009) Application of a conproportionation reaction to a synthesis of shape-controlled gold nanoparticles. J Cryst Growth 311:4462–4466

    Google Scholar 

  24. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiply shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Google Scholar 

  25. Kuo CH, Huang MH (2005) Synthesis of branched of gold nanocrystals by a seeding growth approach. Langmuir 21:2012–2016

    Google Scholar 

  26. Wu HL, Chen CH, Huang M (2009) Seed-mediated of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater 21:110–114

    Google Scholar 

  27. Zou H, Ying E, Dong S (2006) Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties. Nanotechnology 17:4758–4764

    Google Scholar 

  28. Barbosa S et al (2010) Size tuning and sensing capabilities of gold nanostars. Langmuir 26:14943–14950

    Google Scholar 

  29. Minati L et al (2014) One-step synthesis of star-shaped gold nanoparticles. Colloids Surf A Physicochem Eng Asp 441:623–628

    Google Scholar 

  30. Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112:18849–18859

    Google Scholar 

  31. Yuan H, Khoury CG et al (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23:075102

    Google Scholar 

  32. Osinkina L et al (2013) Synthesis of gold nanostar arrays as reliable, large-scale homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy. J Phys Chem C 117(43):22198–22202

    Google Scholar 

  33. Li Y, Ma J, Ma Z (2013) Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing. Electrochim Acta 108:435–440

    Google Scholar 

  34. Chirea M (2013) Electron transfer of gold nanostars assemblies: a study of shape stability and surface density influence. Catalysts 3:288–309

    Google Scholar 

  35. Kereselidze Z, Romero VH, Peralta XG, Santamaria F (2012) Gold nanostar synthesis with a silver seed mediated growth method. JoVE Bioeng. doi:10.3791/3570

    Google Scholar 

  36. Salinas K et al (2014) Transient extracellular application of gold nanostars increases hippocampal neuronal activity. J Nanobiotechnol 12:31

    Google Scholar 

  37. Stassi S et al (2012) Synthesis and characterization of gold nanostars as filler of tunneling conductive polymer composites. Eur J Inorgan Chem 16:2669–2673

    Google Scholar 

  38. Pallavicini P, Dona A et al (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267

    Google Scholar 

  39. Nehl CL, Liao H, Hafner JH (2006) Plasmon resonant molecular sensing with single gold nanostars. Proc SPIE 6323:63230G

    Google Scholar 

  40. Sau TK, Rogach AL, Döblinger M, Feldmann J (2011) One-step high-yield aqueous synthesis of size-tunable multispiked gold nanoparticles. Small 7:2188–2194

    Google Scholar 

  41. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Google Scholar 

  42. Xie J, Lee JY, Wang DIC (2007) Seedless, surfactantless, high-yield synthesis of branched nanocrystals in HEPES buffer solution. Chem Mater 19:2823–2839

    Google Scholar 

  43. Jena BK, Raj CR (2007) Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards oxidation of methanol and the reduction of oxygen. Langmuir 23:4064–4070

    Google Scholar 

  44. Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M (2005) Synthesis and morphology of star-shaped gold nanoplates protected by Poly(N-vinyl-2-pyrrolidone). Chem Mater 17:5391–5393

    Google Scholar 

  45. Hao E, Bailey RC, Scharz GC, Hupp JT, Li S (2004) Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett 4:327–330

    Google Scholar 

  46. Umedevi S, Lee HC, Ganesh V, Feng X, Hegmann T (2014) A versatile, one-pot synthesis f gold nanostars with long, well-defined, thorns using a lyotropic liquid crystal template. Liquid Crystals 41:265–276

    Google Scholar 

  47. Moukarzel W, Fitremann J, Marty JD (2011) Seed-less amino-sugar-mediated synthesis of gold nanostars. Nanoscale 8:3285–3290

    Google Scholar 

  48. Zhou M, Chen S, Zhao S (2006) Preparation of branched gold nanocrystals by an electrochemical method. Chem Lett 35:332–333

    Google Scholar 

  49. Li Z, Li W, Camargo PHC, Xia Y (2008) Facile synthesis of branched Au nanostructures by templating against a self-destructive lattice of magnetic Fe nanoparticles. Angew Chem Int Ed 47:9653–9656

    Google Scholar 

  50. Chirumamilla M et al (2014) Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology 25:235303

    Google Scholar 

  51. Chirumamilla M et al (2014) 3D nanostars dimers with a sub-10-nm gap for single-/few-molecule surface enhanced Raman scattering. Adv Mater 26:2353–2358

    Google Scholar 

  52. Park G, Seo D, Chung IS, Song H (2013) Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detections of proteins. Langmuir 29:13518–13526

    Google Scholar 

  53. Tiwari PM et al (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63

    Google Scholar 

  54. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333–1383

    Google Scholar 

  55. Rahme K et al (2013) PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticles dimensions. RSC Adv 3:6085–6095

    Google Scholar 

  56. Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed 9:467–483

    Google Scholar 

  57. Kumar R et al (2013) Third generation gold nanoplatform optimized for radiation therapy. Transl Cancer Res 4:228–239

    Google Scholar 

  58. Manson J, Kumar D, Meenan BJ, Dixon D (2011) Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 44:99–105

    Google Scholar 

  59. Navarro JR et al (2012) Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology 46:465602

    Google Scholar 

  60. Jo H et al (2014) Ultra-effective photothermal therapy for prostate cancer cells using dual-aptamer modified gold nanostars. J Mater Chem B 2:4862–4867

    Google Scholar 

  61. Yuan H et al (2012) In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomed Nanotechnol Biol Med 8:1355–1363

    Google Scholar 

  62. Cennamo N et al (2013) Localized surface plasmon resonance with five branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors (Basel) 13:14676–14686

    Google Scholar 

  63. Wang S et al (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy photosensitizer-functionalized gold nanostars. Adv Mater 25:3055–3061

    Google Scholar 

  64. Li W et al (2014) In vivo quantitative photoacoustic microscopy of gold nanostars kinetics in mouse organs. Biomed Opt Express 5(8):2679–2685. doi:10.1364/BOE.5.002679

    Google Scholar 

  65. Chen X, Wong STC (eds) (2014) Cancer theranostic. Academic, London

    Google Scholar 

  66. Nune SK et al (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6:1175–1194

    Google Scholar 

  67. Song Y, Zhu S, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4:27184–27200

    Google Scholar 

  68. Zedler L et al (2012) Ruthenium dye functionalized gold nanoparticles and their spectral responses. RSC Adv 2:4463–4471

    Google Scholar 

  69. Narband N et al (2009) The interaction between gold nanoparticles and cationic and anionic dyes: enhanced UV-visible absorption. Phys Chem Chem Phys 44:10513–10518

    Google Scholar 

  70. Sironi L et al (2009) p53 Detection by fluorescence lifetime on a hybrid fluorescein isothiocyanate gold nanosensor. J Biomed Nanotechnol 5:683–691

    Google Scholar 

  71. Cordes DB et al (2005) Optical glucose detection across the visible spectrum using anionic fluorescent dyes and a viologen quencher in a two-component saccharide sensing system. Org Biomol Chem 3:1708–1713

    Google Scholar 

  72. Leung CH et al (2012) Luminescent detection of DNA-binding proteins. Nucleic Acids Res 40:941–955

    Google Scholar 

  73. Radwan SH, Azzazy HME (2009) Gold nanoparticles for molecular diagnostic. Expert Rev Mol Diagn 9:511–524

    Google Scholar 

  74. Yang PJ et al (2012) Quenching effects of gold nanoparticles in nanocomposites formed in water-soluble conjugated polymer nanoreactors. Polymer 53:239–946

    Google Scholar 

  75. Dulkeith E et al (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589

    Google Scholar 

  76. Hutter E, Maysinger D (2013) Trends Pharmacol Sci 34:497–506

    Google Scholar 

  77. Conde J et al (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2:48

    Google Scholar 

  78. Navarro JRG et al (2013) Tuning dye-to-particle interactions toward luminescent gold nanostars. Langmuir 29:10915–10921

    Google Scholar 

  79. Indrasekara AS et al (2014) Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 6:8891–8899

    Google Scholar 

  80. Xie N, Lin Y, Mazo M, Chiappini C et al (2014) Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale 6:12403–12407

    Google Scholar 

  81. Vo-Dinh T et al (2014) SERS nanosensors and nanoreporters: golden opportunities in biomedical application. Nanomed Nanobiotechnol. doi:10.1002/wnan.1283

    Google Scholar 

  82. Giorgetti E et al (2012) Tunable gold nanostars for surface enhanced Raman spectroscopy. Phys Stat Solidi B 249:1188–1192

    Google Scholar 

  83. Chen H et al (2013) Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 3:633–649

    Google Scholar 

  84. Fales AM, Yuan H, Vo-Dinh T (2011) Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatforms for theranostics. Langmuir 27:12186–12190

    Google Scholar 

  85. Melnikau D et al (2013) Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates. Nanoscale Res Lett 8:134

    Google Scholar 

  86. Allegeyer ES et al (2009) Optical signal comparison of single fluorescent molecules and Raman active gold nanostars. Nano Lett 9:3816–3819

    Google Scholar 

  87. Baginskiy I et al (2013) Chitosan-modified stable colloidal gold nanostars for the thermolysis of cancer cells. J Phys Chem 117:2396–2410

    Google Scholar 

  88. Yuan H et al (2012) TAT-peptide functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361

    Google Scholar 

  89. Dondapati S et al (2010) Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4:6318–6322

    Google Scholar 

  90. Fales AM, Yuan H, Vo-Dinh T (2013) Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Mol Pharm 10:2291–2298

    Google Scholar 

  91. Dam DH et al (2012) Direct observation of nanoparticles-cancer cell nucleus interactions. ACS Nano 6:3318–3326

    Google Scholar 

  92. Li M et al (2012) Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem 84:2837–2842

    Google Scholar 

  93. Dam DHM et al (2014) Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Mol Pharm 11:580–587

    Google Scholar 

  94. Rodriguez-Lorenzo L et al (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11:604–607

    Google Scholar 

  95. Eber FJ et al (2013) Bottom-up-assembled nanostar colloids of gold cores and tubes derived from tobacco mosaic virus. Angew Chem 125:7344–7348

    Google Scholar 

  96. Schutz M et al (2011) Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 47:4216–4218

    Google Scholar 

  97. Wei Q et al (2009) Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic core. J Am Chem Soc 131:9728–9734

    Google Scholar 

  98. Su Q et al (2011) A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars. ACS Appl Mater Interface 3:1873–1879

    Google Scholar 

  99. Mueller M et al (2012) Large-area organization of pNIPAM-coated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase. Langmuir 28:9168–9173

    Google Scholar 

  100. Pei Y et al (2013) Highly-sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold-nanostars and aggregates of gold nanostars. J Mater Chem B 1:3992–3998

    Google Scholar 

  101. Chirico G, Pallavicini P, Collini M (2014) Gold nanostars for superficial diseases: a promising tool for localized hyperthermia? Nanomedicine 9:1–3

    Google Scholar 

  102. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM (2013) Multifunctionality in metal@microgel colloidal composites. J Mater Chem A 1:20–26

    Google Scholar 

  103. Caceres-Contreras R et al (2008) Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater 20:1666–1670

    Google Scholar 

  104. Esentruk EN, Walker AR (2013) Gold nanosrars@iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J Nanopart Res 15:1364

    Google Scholar 

  105. Quaresma P et al (2014) Star-shaped magnetic@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4:3659–3667

    Google Scholar 

  106. Yuan H et al (2012) Spectral characterization and intracellular detection od surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44:234–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Borzenkov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pallavicini, P., Cabrini, E., Borzenkov, M. (2015). Gold Nanostar Synthesis and Functionalization with Organic Molecules. In: Gold Nanostars. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-20768-1_1

Download citation

Publish with us

Policies and ethics