Skip to main content

Ash Fractionation Behavior During Fixed-Bed Combustion

  • Chapter
  • First Online:
  • 338 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The experiences carried out with the 250 kW\(_{th}\) fixed-grate combustion unit provided a general knowledge about the combustion performance of brassica and poplar. They have highlighted the implications that the peculiarities of the fuels and, particularly, the ash attributes and fractionation behavior during combustion had on the overall combustion process efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boström D, Skoglund N, Grimm A, Boman C, Öhman M, Broström M, Backman R (2012) Ash transformation chemistry during combustion of biomass. Energy Fuels 26(1):85–93

    Article  MATH  Google Scholar 

  2. European standard EN 303–5:2012: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW. Terminology, requirements, testing and marking. European Committee for Standardization (CEN), 2012

    Google Scholar 

  3. Boström D, Grimm A, Boman C, Björnbo E, Öhman M (2009) Influence of kaolin and calcite additives on ash transformations in small-scale combustion of oat. Energy Fuels 23(10):5184–5190

    Article  Google Scholar 

  4. Lindström E, Larsson S, Boström D, Öhman M (2010) Slagging characteristics during combustion of woody biomass pellets made from a range of different forestry assortments. Energy Fuels 24:3456–3461

    Google Scholar 

  5. Wu H, Castro M, Jensen P, Frandsen F, Glarborg P, Dam-Johansen K, Røkke M, Lundtorp K (2011) Release and transformation of inorganic elements in combustion of a high-phosphorus fuel. Energy Fuels 25(7):2874–2886

    Google Scholar 

  6. Novakovic A, van Lith S, Frandsen F, Jensen P, Holgersen L (2009) Release of potassium from the systems K-Ca-Si and K-Ca-P. Energy Fuels 23(7):3423–3428

    Article  Google Scholar 

  7. Morey G, Kracek F, Bowen N (1930) Soc Glass Technol 14:158

    Google Scholar 

  8. Znamierowska-Kubicka T (1977) Phase-equilibriums in the system calcium oxide-potassium oxide-phosphorus pentoxide. Part I. The partial system calcium pyrophosphate-potassium metaphosphate-calcium metaphosphate. Rocz Chem 51(11):2089–2098

    Google Scholar 

  9. Znamierowska-Kubicka T (1978) Phase-equilibriums in the system calcium oxide-potassium oxide-phosphorus (V) oxide. Part II. Partial system calcium phosphate-calcium potassium pyrophosphate-potassium metaphosphate-calcium pyrophosphate. Polish J Chem 52(6):1127–1134

    Google Scholar 

  10. Znamierowska-Kubicka T (1978) Phase-equilibriums in the system calcium oxide-potassium oxide-phosphorus (V) oxide. Part III. Partial system calcium dipotassium pyrophosphate-potassium pyrophosphate-potassium metaphosphate. Polish J Chem 52(10):1889–1895

    Google Scholar 

  11. Znamierowska-Kubicka T (1979) Phase-equilibriums in the system calcium oxide-potassium oxide-phosphorus (V) oxide. Part IV. Partial system calcium potassium phosphate-calcium tetrapotassium phosphate-potassium pyrophosphate-calcium dipotassium pyrophosphate. Polish J Chem 53(7–8):1415–1423

    Google Scholar 

  12. Znamierowska-Kubicka T (1981) Phase-equilibriums in the system calcium oxide-potassium oxide-phosphorus (V) oxide. Part V. Partial system calcium oxide-potassium phosphate-potassium diphosphate. Polish J Chem 55(4):747–756

    Google Scholar 

  13. Lindstrom E, Sandstrom M, Boström D, Öhman M (2007) Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuels 21(2):710–717

    Article  Google Scholar 

  14. Knudsen J, Jensen P, Dam-Johansen K (2004) Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy Fuels 18(5):1385–1399

    Article  Google Scholar 

  15. van Lith S, Jensen P, Frandsen F, Glarborg P (2008) Release to the gas phase of inorganic elements during wood combustion. Part 2: influence of fuel composition. Energy Fuels 22(3):1598–1609

    Article  Google Scholar 

  16. Thy P, Jenkins B, Grundvig S, Shiraki R, Lesher C (2006) High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85(5–6):783–795

    Article  Google Scholar 

  17. Knudsen J, Jensen P, Lin W, Frandsen F, Dam-Johansen K (2004) Sulfur transformations during thermal conversion of herbaceous biomass. Energy Fuels 18(3):810–819

    Article  Google Scholar 

  18. Piotrowska P, Zevenhoven M, Davidsson K, Hupa M, Amand LE, Barisic V, Zabetta EC (2010) Fate of alkali metals and phosphorus of rapeseed cake in circulating fluidized bed boiler part 1: cocombustion with wood. Energy Fuels 24:333–345

    Article  Google Scholar 

  19. Piotrowska P, Zevenhoven M, Davidsson K, Hupa M, Åmand LE, Barisic V́, Zabetta EC (2010) Fate of alkali metals and phosphorus of rapeseed cake in circulating fluidized bed boiler Part 2: cocombustion with coal. Energy Fuels 24(8):4193–4205

    Google Scholar 

  20. Grimm A, Skoglund N, Boström D, Boman C, Ohman M (2012) Influence of phosphorus on alkali distribution during combustion of logging residues and wheat straw in a bench-scale fluidized bed. Energy Fuels 26(5):3012–3023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryori C. Díaz-Ramírez .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz-Ramírez, M.C. (2015). Ash Fractionation Behavior During Fixed-Bed Combustion. In: Grate-Fired Energy Crop Conversion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20759-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20759-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20758-2

  • Online ISBN: 978-3-319-20759-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics