Skip to main content

Biofuel Characteristics and Grate Conversion

  • Chapter
  • First Online:
  • 361 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Energy crops share many characteristics with other solid fuels, such as coal and wood. Nevertheless, they are clearly differentiated with regard to the fuel chemical properties and, particularly, the ones linked to the inorganic matter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. van Loo S, Koppejan J (2002) Handbook of biomass combustion and co-firing. Enschede, Netherlands

    Google Scholar 

  2. Vassilev S, Baxter D, Andersen L, Vassileva C (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933

    Article  Google Scholar 

  3. Jenkins B, Baxter L, Miles T (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46

    Article  Google Scholar 

  4. Marschner H (2002) Mineral nutrients in higher plants. Academic Press, London

    Google Scholar 

  5. Zevenhoven-Onderwater M (2001) Ash forming matter in biomass fuels. Ph.D. thesis

    Google Scholar 

  6. Livingston W (2006) Biomass ash characteristics and behaviour in combustion systems. MitsuiBabcock

    Google Scholar 

  7. Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27(6):653–669

    Article  Google Scholar 

  8. Passalacqua F, Zaetta C, Janssen R, Pigaht M, Grassi G, Pastre O, Sandovar A, Vegas L, Tsoutsos T, Karapanagiotis N, Fjällström T, Nilsson S, Bjerg J (2004) Pellets in southern Europe. The state of the art of pellets utilisation in southern europe. New perspectives of pellets from agri-residues. In: 2nd World Conference on Biomass for Energy, Industry and Climate Protection, Rome, Italy, pp 1806–1810

    Google Scholar 

  9. Ryu C, Yang Y, Khor A, Yates N, Sharifi V, Swithenbank J (2006) Effect of fuel properties on biomass combustion: Part I. Experiments—fuel type, equivalence ratio and particle size. Fuel 85(7–8):1039–1046

    Article  Google Scholar 

  10. Suurs R (2002) Long distance bioenergy logistics. Technical report

    Google Scholar 

  11. Mediavilla I (2010) Analisis y optimizacion del proceso de pelletizacion de biomasa y estudio de su comportamiento como combustible en una caldera del sector domestico. Ph.D. thesis

    Google Scholar 

  12. Houshfar E, Skreiberg Ø Todorovi\(\acute{c}\) D, Skreiberg A, Løv\(\mathring{a}\)s T, Jovovi\(\acute{c}\) A, Sørum L (2012) NO\(_x\) emission reduction by staged combustion in grate combustion of biomass fuels and fuel mixtures. Fuel 98:29–40

    Google Scholar 

  13. Mediavilla I, Fernández M, Esteban L (2009) Optimization of pelletisation and combustion in a boiler of 17.5 kW\(_{th}\) for vine shoots and industrial cork residue. Fuel Process Technol 90(4):621–628

    Article  Google Scholar 

  14. European standard CEN/TS 14961: 2005 Solid biofuels—Fuel specifications and classes. European Committee for Standardization (CEN) (2005)

    Google Scholar 

  15. European standard EN 303–5:2012: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW. Terminology, requirements, testing and marking. European Committee for Standardization (CEN) (2012)

    Google Scholar 

  16. Robbins M, Evans G, Valentine J, Donnison I, Allison G (2012) New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog Energy Combust Sci 38(2):138–155

    Article  Google Scholar 

  17. Zeng T (2011) National conditions-Austria. IEE/09/758/SI2.558286—MixBioPells. WP4 / D 4.3. Technical report

    Google Scholar 

  18. Art 15a B-VG agreement: Precautionary measures regarding small-scale heating systems (2010)

    Google Scholar 

  19. Kavalov B, Peteves S (2004) BIOHEAT Applications in the European Union: an analysis and perspective for 2010. Technical report

    Google Scholar 

  20. Yin C, Rosendahl L, Kær S (2008) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34(6):54–725

    Article  Google Scholar 

  21. Werther J, Saenger M, Hartge E, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27

    Article  Google Scholar 

  22. Oland C (2002) Guide to low emission boiler and combustion equipment selection. U.S. Department of Energy. Oak Ridge National Laboratory, Technical report

    Google Scholar 

  23. Friberg R, Blasiak W (2002) Measurements of mass flux and stoichiometry of conversion gas from three different wood fuels as function of volume flux of primary air in packed-bed combustion. Biomass Bioenergy 23(3):189–208

    Article  Google Scholar 

  24. Fiedler F (2004) The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany. Renew Sustain Energ Rev 8(3):201–221

    Article  MathSciNet  Google Scholar 

  25. Alakangas E (2002) Wood pellets in Finland, technology, ecomomy and market. Technical report

    Google Scholar 

  26. Strand M (2004) Particle formation and emission in moving grate boilers operating on woody biofuels. Ph.D. thesis

    Google Scholar 

  27. Thunman H, Leckner B (2001) Ignition and propagation of a reaction front in cross-current bed combustion of wet biofuels. Fuel 80(4):473–481

    Article  Google Scholar 

  28. Ojaniemi A (2002) Design principles of biofuel-fired heating stations of \({<}\)10 MW. Technical report, OPET Finland

    Google Scholar 

  29. Yang Y, Ryu C, Khor A, Yates N, Sharifi V, Swithenbank J (2005) Effect of fuel properties on biomass combustion. Part II. Modelling approach-identification of the controlling factors. Fuel 84(16):2116–2130

    Article  Google Scholar 

  30. Wiinikka H (2005) High temperature aerosol formation and emission minimisation during combustion of wood pellets. Ph.D. thesis

    Google Scholar 

  31. Combustion and gasification of agricultural biomass—technologies and applications. Technical report (1995)

    Google Scholar 

  32. Teir S (2002) Modern boiler types and applications. Technical report, Helsinki University of Technology. Department of Mechanical Engineering. Energy Engineering and Environmental Protection

    Google Scholar 

  33. Morf L (2003) Thermische Verfahren der Entsorgung. Technical report, TU Wien AWS

    Google Scholar 

  34. Porteiro J, Patio D, Collazo J, Granada E, Moran J, Miguez J (2010) Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor. Fuel 89(1):26–35

    Article  Google Scholar 

  35. Brunner T, Obernberger I, Scharler R (2009) Primary measures for low-emission residential wood combustion-Comparison of old with optimised modern systems. In: 17th European Biomass Conference and Exhibition, Hamburg, Germany, pp 1319–1328

    Google Scholar 

  36. Weber G, Zygarlicke C (2001) Barrier issues to the utilization of biomass. Technical report

    Google Scholar 

  37. Salzmann R, Nussbaumer T (2001) Fuel staging for NO\(_X\) reduction in biomass combustion: experiments and modeling. Energy Fuels 15(3):575–582

    Article  Google Scholar 

  38. Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17(6):1510–1521

    Article  Google Scholar 

  39. Obernberger I, Brunner T, Bärnthaler G (2006) Chemical properties of solid biofuels-significance and impact. Biomass Bioenergy 30(11):973–982

    Article  Google Scholar 

  40. Carvalho L, Wopienk E, Pointner C, Lundgren J, Verma VK, Haslinger W (2003) Performance of a pellet boiler fired with agricultural fuels. Appl Energy 104:286–296

    Article  Google Scholar 

  41. Sommersacher P, Brunner T, Obernberger I (2011) Fuel indexes: a novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuels 26(1):380–390

    Article  Google Scholar 

  42. Tissari J, Sippulai O, Kouki J, Vuorio K, Jokiniemi J (2008) Fine particle and gas emissions from the combustion of agricultural fuels fired in a 20 kW burner. Energy Fuels 22(3):2033–2042

    Article  Google Scholar 

  43. Sippula O, Hytönen K, Tissari J, Raunemaa T, Jokiniemi J (2007) Effect of wood fuel on the emissions from a top-feed pellet stove. Energy Fuels 21(2):1151–1160

    Article  Google Scholar 

  44. Houshfar E, Løvås T, Øyvind S (2012) Experimental investigation on NO\(_x\) reduction by primary measures in biomass combustion: straw, peat, sewage sludge, forest Residues and Wood Pellets. Energies 5(2):270–290

    Google Scholar 

  45. Baxter LL, Miles TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behaviour of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54(1–3):47–78

    Article  Google Scholar 

  46. Lindstrom E, Sandstrom M, Boström D, Öhman M (2007) Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuels 21(2):710–717

    Article  Google Scholar 

  47. Öhman M, Boman C, Hedman H, Nordin A, Boström D (2004) Slagging tendencies of wood pellet ash during combustion in residential pellet burners. Biomass Bioenergy 27(6):585–596

    Article  Google Scholar 

  48. Díaz-Ramírez M, Boman C, Sebastián F, Royo J, Xiong S, Boström D (2012) Ash characterization and transformation behavior of the fixed-bed combustion of novel crops: poplar, brassica, and cassava fuels. Energy Fuels 26(6):3218–3229

    Article  Google Scholar 

  49. Lindström E, Larsson S, Boström D, Öhman M Slagging characteristics during combustion of woody biomass pellets made from a range of different forestry assortments. Energy Fuels 24:3456–61

    Google Scholar 

  50. Jensen P, Frandsen F, Hansen J, Dam-Johansen K, Henriksen N, Hörlyck S (2004) SEM investigation of superheater deposits from biomass-fired boilers. Energy Fuels 18(2):378–384

    Article  Google Scholar 

  51. Miles TR, Miles JRTR, Baxter LL, Bryers RW, Jenkins BM, Oden LL (1996) Boiler deposits from firing biomass fuels. Biomass Bioenergy 10(2–3):125–138

    Article  Google Scholar 

  52. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Article  Google Scholar 

  53. Bott T (1995) Fouling of heat exchangers. Elsevier Science, Amsterdam

    Google Scholar 

  54. Frandsen F, Pedersen A, Hansen J, Madsen O, Lundtorp K, Mortensen L (2009) Deposit formation in the FASAN Wt E boiler as a function of feedstock composition and boiler operation. Energy Fuels 23(7):3490–3496

    Article  Google Scholar 

  55. Bankiewicz D, Yrjas P, Hupa M (2009) High-temperature corrosion of superheater tube materials exposed to zinc salts. Energy Fuels 23(7):3469–3474

    Article  Google Scholar 

  56. Michelsen H, Frandsen F, Dam-Johansen K, Larsen O (1998) Deposition and high temperature corrosion in a 10 MW straw fired boiler. Fuel Process Technol 54(1–3):95–108

    Article  Google Scholar 

  57. Nielsen H, Frandsen F, Dam-Johansen K, Baxter L (2000) The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog Energy Combust Sci 26(3):283–298

    Article  Google Scholar 

  58. Davidsson K, Amand L-E, Leckner B, Kovacevik B, Svane M, Hagstrom M, Pettersson J, Pettersson J, Asteman H, Svensson J-E, Johansson L-G (2007) Potassium, chlorine, and sulfur in ash, particles, deposits, and corrosion during wood combustion in a circulating fluidized-bed boiler. Energy Fuels 21(1):71–81

    Article  Google Scholar 

  59. Hansen L, Nielsen H, Frandsen F, Dam-Johansen K, Hørlyck S, Karlsson A (2000) Influence of deposit formation on corrosion at a straw-fired boiler. Fuel Process Technol 64(1–3):189–209

    Google Scholar 

  60. Baxter L (1993) Ash deposition during biomass and coal combustion: a mechanistic approach. Biomass Bioenergy 4(2):85–102

    Article  Google Scholar 

  61. Sippula O, Hokkinen J, Puustinen H, Yli-Pirilä P, Jokiniemi J (2009) Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos Environ 43(32):4855–4864

    Article  Google Scholar 

  62. Ohlström M, Jokiniemi J, Hokkinen J, Makkonen P, Tissari J (2006) Combating particulate emissions in energy generation and industry. Technical report, VTT Technical Research Centre of Finland

    Google Scholar 

  63. Christensen K (1995) The formation of submicron particles from the combustion of straw. Ph.D. thesis

    Google Scholar 

  64. Zbogar A, Jensen P, Frandsen F, Hansen J, Glarborg P (2006) Experimental investigation of ash deposit shedding in a straw-fired boiler. Energy Fuels 20(2):512–519

    Article  Google Scholar 

  65. Gaffney J, Marley N (2009) The impacts of combustion emissions on air quality and climate—from coal to biofuels and beyond. Atmos Environ 43(1):23–36

    Article  Google Scholar 

  66. Fernandez A, Wendt J, Wolski N, Hein K, Wang S, Witten M (2003) Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel. Chemosphere 51(10):1129–1137

    Article  Google Scholar 

  67. Tucker W (2000) An overview of PM 2.5 sources and control strategies. Fuel Process Technol 65–66:379–392

    Article  Google Scholar 

  68. Brunner T, Bärnthaler G, Obernberger I (2006) Fine particulate emissions from state-of-the-art small-scale austrian pellet furnaces

    Google Scholar 

  69. Gilbe C, Öhman M, Lindström E, Boström D, Backman R, Samuelsson R, Burvall J (2008) Slagging characteristics during residential combustion of biomass pellets. Energy Fuels 22(5):3536–3543

    Article  Google Scholar 

  70. Eriksson G, Hedman H, Bostrm D, Pettersson E, Backman R, Öhman M (2009) Combustion characterization of rapeseed meal and possible combustion applications. Energy Fuels 23(8):3930–3939

    Article  Google Scholar 

  71. Wu H, Castro M, Jensen P, Frandsen F, Glarborg P, Dam-Johansen K, Røkke M, Lundtorp K (2011) Release and transformation of inorganic elements in combustion of a high-phosphorus fuel. Energy Fuels 25(7):2874–2886

    Google Scholar 

  72. Thy P, Jenkins B, Grundvig S, Shiraki R, Lesher C (2006) High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85(5–6):783–795

    Article  Google Scholar 

  73. Wiinikka H, Gebart R, Boman C, Boström D, Öhman M (2007) Influence of fuel ash composition on high temperature aerosol formation in fixed bed combustion of woody biomass pellets. Fuel 86(1–2):181–193

    Article  Google Scholar 

  74. Öhman M, Boman C, Hedman H, Nordin A, Boström D (2004) Slagging tendencies of wood pellet ash during combustion in residential pellet burners. Biomass Bioenergy 27(6):585–96

    Google Scholar 

  75. Frederick J, Vakkilainen E (2003) Sintering and structure development in alkali metal salt deposits formed in kraft recovery boilers. Energy Fuels 17(6):1501–1509

    Article  Google Scholar 

  76. Andersen K, Frandsen F, Hansen P, Wieck-Hansen K, Rasmussen I, Overgaard P, Dam-Johansen K (2000) Deposit formation in a 150 MWe utility PF-boiler during co-combustion of coal and straw. Energy Fuels 14(4):765–780

    Article  Google Scholar 

  77. Obernberger I, Biedermann F, Widmann W, Riedl R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12(3):211–224

    Article  Google Scholar 

  78. Strand M, Pagels J, Szpila A, Gudmundsson A, Swietlicki E, Bohgard M, Sanati M (2002) Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6 MW biomass fired boiler. Energy Fuels 16(6):1499–1506

    Article  Google Scholar 

  79. Zhuang Y, Jin Kim Y, Gyu Lee T, Biswas P (2000) Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. J Electrostat 48(3–4):245–260

    Google Scholar 

  80. Jensen P, Frandsen F, Dam-Johansen K, Sander B (2000) Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy Fuels 14(6):1280–1285

    Article  Google Scholar 

  81. Srikanth S, Das S, Ravikumar B, Rao D, Nandakumar K, Vijayan P (2004) Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler. Biomass Bioenergy 27(4):375–384

    Article  Google Scholar 

  82. Tillman D, Duong D, Miller B (2009) Chlorine in solid fuels fired in pulverized fuel boilers—sources, forms, reactions, and consequences: a literature review. Energy Fuels 23(7):3379–3391

    Article  Google Scholar 

  83. Björkman E, Strömberg B (1997) Release of chlorine from biomass at pyrolysis and gasification conditions. Energy Fuels 11(5):1026–1032

    Article  Google Scholar 

  84. Davidsson K, Pettersson J, Nilsson R (2002) Fertiliser influence on alkali release during straw pyrolysis. Fuel 81(3):259–262

    Article  Google Scholar 

  85. Olsson J, Jäglid U, Pettersson J, Hald P (1997) Alkali metal emission during pyrolysis of biomass. Energy Fuels 11(4):779–784

    Article  Google Scholar 

  86. Risnes H, Fjellerup J, Henriksen U, Moilanen A, Norby P, Papadakis K, Posselt D, Sørensen L (2003) Calcium addition in straw gasification. Fuel 82(6):641–651

    Google Scholar 

  87. Dahl O, Nurmesniemi H, Pöykiö R, Watkins G (2009) Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Process Technol 90(78):871–878

    Article  Google Scholar 

  88. Vamvuka D, Pitharoulis M, Alevizos G, Repouskou E, Pentari D (2009) Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew Energy 34(12):2662–2671

    Article  Google Scholar 

  89. Shah K, Cieplik M, Betrand C, van de Kamp W, Vuthaluru H (2010) Correlating the effects of ash elements and their association in the fuel matrix with the ash release during pulverized fuel combustion. Fuel Process Technol 91(5):531–545

    Article  Google Scholar 

  90. Müller M, Wolf K-J, Smeda A, Hilpert K (2006) Release of K, Cl, and S Species during co-combustion of coal and straw. Energy Fuels 20(4):1444–1449

    Article  Google Scholar 

  91. van Lith S, Alonso-Ramirez V, Jensen P, Frandsen F, Glarborg P (2006) Release to the gas phase of inorganic elements during wood combustion. Part 1: development and evaluation of quantification methods. Energy Fuels 20(3):964–978

    Article  Google Scholar 

  92. Knudsen J, Jensen P, Dam-Johansen K (2004) Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy Fuels 18(5):1385–1399

    Article  Google Scholar 

  93. Bridgeman T, Darvell L, Jones J, Williams P, Fahmi R, Bridgwater A, Barraclough T, Shield I, Yates N, Thain S, Donnison I (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86(1–2):60–72

    Article  Google Scholar 

  94. Lang T, Jensen PA, Knudsen JN (2006) The effects of Ca-based sorbents on sulfur retention in bottom ash from grate-fired annual biomass. Energy Fuels 20(2):796–806

    Article  Google Scholar 

  95. Steenari B, Lindqvist O (1998) High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass Bioenergy 14(1):67–76

    Article  Google Scholar 

  96. Fuel Díaz Arocas P, Gutiérrez Nebot L, Carrasco García JE (2008) The effect of the addition of chemical materials on the sintering of biomass ash. 87(12):2651–2658

    Google Scholar 

  97. Aho M, Silvennoinen J (2004) Preventing chlorine deposition on heat transfer surfaces with aluminium-silicon rich biomass residue and additive. Fuel 83(10):1299–1305

    Article  Google Scholar 

  98. Misra M, Ragland K, Baker A (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 4(2):103–116

    Article  Google Scholar 

  99. Thy P, Lesher C, Jenkins B (2000) Experimental determination of high-temperature elemental losses from biomass slag. Fuel 79(6):693–700

    Article  Google Scholar 

  100. Knudsen J, Jensen P, Lin W, Frandsen F, Dam-Johansen K (2004) Sulfur transformations during thermal conversion of herbaceous biomass. Energy Fuels 18(3):810–819

    Article  Google Scholar 

  101. Knudsen J (2004) Volatilization of inorganic matter during combustion of annual biomass. Ph.D. thesis

    Google Scholar 

  102. Knudsen J, Jensen PA, Lin W, Dam-Johansen K (2005) Secondary capture of chlorine and sulfur during thermal conversion of biomass. Energy Fuels 19(2):606–617

    Article  Google Scholar 

  103. Dayton D, Jenkins B, Turn S, Bakker R, Williams R, Belle-Oudry D, Hill M (1999) Release of inorganic constituents from leached biomass during thermal conversion. Energy Fuels 13(4):860–870

    Article  Google Scholar 

  104. van Lith S, Jensen P, Frandsen F, Glarborg P (2008) Release to the gas phase of inorganic elements during wood combustion. Part 2: influence of fuel composition. Energy Fuels 22(3):1598–1609

    Article  Google Scholar 

  105. Frandsen F, van Lith S, Korbee R, Yrjas P, Backman R, Obernberger I, Brunner T, Jöller M (2007) Quantification of the release of inorganic elements from biofuels. Fuel Process Technol 88(11–12):1118–1128

    Article  Google Scholar 

  106. Pedersen A, van Lith S, Frandsen F, Steinsen S, Holgersen L (2010) Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions. Fuel Process Technol 91(9):1062–1072

    Article  Google Scholar 

  107. Johansen JM, Jakobsen JG, Frandsen FJ, Glarborg P (2011) Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass. Energy Fuels 25(11):4961–4971

    Article  Google Scholar 

  108. Novakovic A, van Lith S, Frandsen F, Jensen P, Holgersen L (2009) Release of potassium from the systems K-Ca-Si and K-Ca-P. Energy Fuels 23(7):3423–3428

    Article  Google Scholar 

  109. Boström D, Grimm A, Boman C, Björnbo E, Öhman M (2009) Influence of kaolin and calcite additives on ash transformations in small-scale combustion of oat. Energy Fuels 23(10):5184–5190

    Article  Google Scholar 

  110. Arvelakis S, Jensen P, Dam-Johansen K (2004) Simultaneous thermal analysis (STA) on ash from high-alkali biomass. Energy Fuels 18(4):1066–1076

    Article  Google Scholar 

  111. Glazer M, Khan N, de Jong W, Spliethoff H, Schürmann H, Monkhouse P (2005) Alkali metals in circulating fluidized bed combustion of biomass and coal: measurements and chemical equilibrium analysis. Energy Fuels 19(5):1889–1897

    Article  Google Scholar 

  112. Labalette F, Marsac S, Jacquin C, Lumbreras-Castellano O, Chieze B, Briand S (2010) Evaluation of the performance of triticale and carinata biomasses as biofuels in a french pilot combustion plant. In: 18th European Biomass Conference and Exhibition, Lyon, France, pp 1940–1943

    Google Scholar 

  113. Llorente M, Laplaza J, Cuadrado R, García J (2006) Ash behaviour of lignocellulosic biomass in bubbling fluidised bed combustion. Fuel 85(9):1157–1165

    Article  Google Scholar 

  114. Fernańdez Llorente MJ, Escalada Cuadrado R, Murillo Laplaza JM, Carrasco Garciá JE (2006) Combustion in bubbling fluidised bed with bed material of limestone to reduce the biomass ash agglomeration and sintering. Fuel 85(14–15):2081–2092

    Google Scholar 

  115. Sørum L, Frandsen F, Hustad J (2003) On the fate of heavy metals in municipal solid waste combustion Part I: devolatilisation of heavy metals on the grate. Fuel 82(18):2273–2283

    Google Scholar 

  116. Capablo J, Jensen P, Pedersen K, Hjuler K, Nikolaisen L, Backman R, Frandsen F (2009) Ash properties of alternative biomass. Energy Fuels 23:1965–1976

    Article  Google Scholar 

  117. Boman C, Nordin A, Öhman M, Boström D (2005) Emissions from small-scale combustion of biomass fuels—extensive quantification and characterization. Technical report, Umeå Universitet

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryori C. Díaz-Ramírez .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz-Ramírez, M.C. (2015). Biofuel Characteristics and Grate Conversion. In: Grate-Fired Energy Crop Conversion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20759-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20759-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20758-2

  • Online ISBN: 978-3-319-20759-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics