Skip to main content

Introduction

  • Chapter
  • First Online:
Grate-Fired Energy Crop Conversion

Part of the book series: Springer Theses ((Springer Theses))

  • 334 Accesses

Abstract

During the past decade, biofuels, such as stemwood assortments, have been substantially considered to satisfy the increasing European energy market needs based on non-fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berndes G, Hansson J (2007) Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy 35(12):5965–79

    Article  Google Scholar 

  2. Hall D, Scrase J (1998) Will biomass be the environmentally friendly fuel of the future? Biomass Bioenergy 15(4–5):357–367

    Article  Google Scholar 

  3. de Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34(2):188–202

    Article  Google Scholar 

  4. van Dam J, Faaij A, Lewandowski I, Fischer G (2007) Biomass production potentials in central and Eastern Europe under different scenarios. Biomass Bioenergy 31(6):345–366

    Article  Google Scholar 

  5. Ericsson K, Nilsson L (2006) Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 30(1):1–15

    Article  Google Scholar 

  6. Passalacqua F, Zaetta C, Janssen R, Pigaht M, Grassi G, Pastre O, Sandovar A, Vegas L, Tsoutsos T, Karapanagiotis N, Fjällström T, Nilsson S, Bjerg J (2004) Pellets in southern Europe. The state of the art of pellets utilisation in southern europe. New perspectives of pellets from agri-residues. In: \(2{\rm nd}\) World Conference on Biomass for Energy, Industry and Climate Protection, Rome, Italy, pp 1806–1810

    Google Scholar 

  7. van Loo S, Koppejan J (2002) Handbook of biomass combustion and co-firing. Enschede, Netherlands

    Google Scholar 

  8. Hoogwijk M, Faaij A, Eickhout B, Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29(4):225–257

    Article  Google Scholar 

  9. Thrän D, Seidenberger T, Zeddies J, Offermann R (2010) Global biomass potentials\({-}\) resources, drivers and scenario results. Energy Sustain Dev 14(3):200–205

    Article  Google Scholar 

  10. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Article  Google Scholar 

  11. Vassilev S, Baxter D, Andersen L, Vassileva C (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933

    Article  Google Scholar 

  12. Ciria MP, Solano ML, González E, Fernández M, Carrasco JE (2004) Study of the variability in energy and chemical characteristics of brassica carinata biomass and its influence on the behaviour of this biomass as a solid fuel. In: \(2{\rm nd}\) World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Roma, Italy, pp 1461–1464

    Google Scholar 

  13. Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32(3):216–223

    Article  Google Scholar 

  14. Karampinis E, Vamvuka D, Sfakiotakis S, Grammelis P, Itskos G, Kakaras E (2012) Comparative study of combustion properties of five energy crops and greek lignite. Energy Fuels 26(2):869–78

    Article  Google Scholar 

  15. Eskilsson D, Rönnbäck M, Samuelsson J, Tullin C (2004) Optimisation of efficiency and emissions in pellet burners. Biomass Bioenergy 27(6):541–546

    Article  Google Scholar 

  16. Jenkins B, Baxter L, Miles T (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46

    Article  Google Scholar 

  17. Kauter D, Lewandowski I, Claupein W (2003) Quantity and quality of harvestable biomass from populus short rotation coppice for solid fuel use\(-\)a review of the physiological basis and management influences. Biomass Bioenergy 24(6):411–427

    Article  Google Scholar 

  18. Gasol C, Martínez S, Rigola M, Rieradevall J, Antón A, Carrasco J, Ciria P, Gabarrell X (2009) Feasibility assessment of poplar bioenergy systems in the Southern Europe. Renew Sustain Energ Rev 13(4):801–812

    Article  Google Scholar 

  19. Martínez-Lozano S, Gasol C, Rigola M, Rieradevall J, Anto A, Carrasco J, Ciria P, Gabarrell X (2009) Feasibility assessment of brassica carinata bioenergy systems in Southern Europe. Renew Energy 34(12):2528–2535

    Google Scholar 

  20. Mediavilla I, Fernández M, Esteban L (2009) Optimization of pelletisation and combustion in a boiler of 17.5 kW \(_{th}\) for vine shoots and industrial cork residue. Fuel Process Technol 90(4):621–628

    Article  Google Scholar 

  21. Robbins M, Evans G, Valentine J, Donnison I, Allison G (2012) New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog Energy Combust Sci 38(2):138–55

    Article  Google Scholar 

  22. European standard EN 14961–2: 2011 Solid biofuels\(-\)Fuel specifications and classes. Part 2: wood pellets for non-industrial use. European Committee for Standardization (CEN) (2011)

    Google Scholar 

  23. European standard EN 14961–6: 2012 Solid biofuels\(-\)Fuel specifications and classes. Part 6: non-woody pellets for non-industrial use. European Committee for Standardization (CEN) (2012)

    Google Scholar 

  24. García-Maraver A, Popov V, Zamorano M (2011) A review of European standards for pellet quality. Renew Energy 36(12):3537–3540

    Article  Google Scholar 

  25. de Vries S, van de Ven G, van Ittersum M, Giller K Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34(5):588–601

    Google Scholar 

  26. Sultana A, Kumar A, Harfield D (2010) Development of agri-pellet production cost and optimum size. Bioresour Technol 101(14):5609–5621

    Article  Google Scholar 

  27. Boman C, Nordin A, Öhman M, Boström D ( 2005) Emissions from small-scale combustion of biomass fuels—extensive quantification and characterization. Technical report, Umeå Universitet

    Google Scholar 

  28. Ohlström M, Jokiniemi J, Hokkinen J, Makkonen P, Tissari J (2006) Combating particulate emissions in energy generation and industry. Technical report. VTT Technical Research Centre of Finland

    Google Scholar 

  29. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31(2):171–92

    Article  Google Scholar 

  30. PSE On\(-\)Cultivos: Economic and environmental assessment of energy chains of energy crops. Project reference: PS-120000-2005-6 y PSS-120000-2008-21. 2005–2012

    Google Scholar 

  31. Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27(6):653–669

    Article  Google Scholar 

  32. Yin C, Rosendahl L, Kær S (2008) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34(6):725–754

    Article  Google Scholar 

  33. Werther J, Saenger M, Hartge E, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27

    Article  Google Scholar 

  34. Wang J-J, Jing Y-Y, Zhang C-F, Zhao J-H (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energ Rev 13(9):2263–2278

    Article  Google Scholar 

  35. Sultana A, Kumar A (2012) Ranking of biomass pellets by integration of economic, environmental and technical factors. Biomass Bioenergy 39:344–355

    Article  Google Scholar 

  36. Ojaniemi A (2002) Design principles of biofuel-fired heating stations of \(<\) 10 MW. Technical report, OPET Finland

    Google Scholar 

  37. González J, González-García C, Ramiro A, Gañán J, Ayuso A, Turegano J (2006) Use of energy crops for domestic heating with a mural boiler. Fuel Process Technol 87(8):717–726

    Article  Google Scholar 

  38. González J, González-García C, Ramiro A, González J, Sabio E, Gañán J, Rodríguez M (2004) Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 27(2):145–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryori C. Díaz-Ramírez .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz-Ramírez, M.C. (2015). Introduction. In: Grate-Fired Energy Crop Conversion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20759-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20759-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20758-2

  • Online ISBN: 978-3-319-20759-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics