Skip to main content

Abstract

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and one of the leading causes of cancer-related deaths in the world. Unfortunately, current therapy is inefficient and advanced HCC is highly resistant to chemotherapy, making early diagnosis crucial for survival. HCC develops in the course of chronic liver disease and inflammation. Progressive non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and HCC and NAFLD incidence is expected to grow due to its association with obesity and type 2 diabetes. Sphingolipids (SLs) biology has evolved from the inceptive view of being considered mere structural components of membrane bilayers to the current status of critical second messengers involved in the regulation of myriads cell functions, including cell death pathways. A crucial mechanism underlying the therapeutic potential of cancer treatment involves ceramide species, which stand as the basis for the mode of action of chemotherapy and radiotherapy. However, many solid tumors, including HCC, develop strategies that counter this increase in ceramides, which blunt therapy efficacy and promotes treatment resistance. Understanding these pathways may provide novel strategies to exploit the potential of ceramide and SLs to multiply the therapeutic effect of chemotherapy in the treatment of liver cancer. The present chapter summarizes these pathways and highlights the potential of combinational therapy based on maneuvers to increase SLs to combat liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motola-Kuba D, Zamora-Valdes D, Uribe M, Mendez-Sanchez N (2006) Hepatocellular carcinoma. An overview. Ann Hepatol 5:16–24

    CAS  PubMed  Google Scholar 

  2. Gish RG, Finn RS, Marrero JA (2013) Extending survival with the use of targeted therapy in the treatment of hepatocellular carcinoma. Clin Adv Hematol Oncol 11(Suppl 5):1–22

    PubMed  Google Scholar 

  3. Tilg H, Diehl AM (2000) Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med 343:1467–1476

    Article  CAS  PubMed  Google Scholar 

  4. Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G (2010) A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 53:372–384

    Article  PubMed  Google Scholar 

  5. Schöffski P, Dumez H, Clement P, Hoeben A, Prenen H, Wolter P, Joniau S, Roskams T, Van Poppel H (2006) Emerging role of tyrosine kinase inhibitors in the treatment of advanced renal cell cancer: a review. Ann Oncol 17:1185–1196

    Article  PubMed  Google Scholar 

  6. Bolos D, Finn RS (2014) Systemic therapy in HCC: lessons from brivanib. J Hepatol 61:947–950

    Article  CAS  PubMed  Google Scholar 

  7. Ryland LK, Fox TE, Liu X, Loughran TP, Kester M (2011) Dysregulation of sphingolipid metabolism in cancer. Cancer Biol Ther 11:138–149

    Article  CAS  PubMed  Google Scholar 

  8. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    Article  CAS  PubMed  Google Scholar 

  9. Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15:585–594

    Article  CAS  PubMed  Google Scholar 

  11. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  12. Morales A, Lee H, Goñi F, Kolesnick R, Fernandez-Checa J (2007) Sphingolipids and cell death. Apoptosis 12:923–939

    Article  CAS  PubMed  Google Scholar 

  13. Williams RD, Nixon DW, Merrill AH Jr (1984) Comparison of serine palmitoyltransferase in Morris hepatoma 7777 and rat liver. Cancer Res 44(5):1918–1923

    CAS  PubMed  Google Scholar 

  14. Mizutani Y, Kihara A, Chiba H, Tojo H, Igarashi Y (2008) 2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length. J Lipid Res 49:2356–2364

    Article  CAS  PubMed  Google Scholar 

  15. Pewzner-Jung Y, Brenner O, Braun S, Laviad EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D, Raanan C, Berkutzki T, Erez-Roman R, Ben-David O, Levy M, Holzman D, Park H, Nyska A, Merrill AH Jr, Futerman AH (2010) A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J Biol Chem 285:10911–10923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50:S91–S96

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Breslow DK, Weissman JS (2010) Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 40:267–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121:4222–4230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Smith EL, Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 22:3419–3431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Canals D, Perry DM, Jenkins RW, Hannun YA (2011) Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 163:694–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Angulo S, Morales A, Danese S, Llacuna L, Masamunt MC, Pultz N, Cifone MG, De Simone C, Delgado S, Vila J, Panes J, Donskey C, Fernandez-Checa JC, Fiocchi C, Sans M (2011) Probiotic sonicates selectively induce mucosal immune cells apoptosis through ceramide generation via neutral sphingomyelinase. PLoS One 6, e16953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Coll O, Morales A, Fernández-Checa JC, Garcia-Ruiz C (2007) Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res 48:1924–1935

    Article  CAS  PubMed  Google Scholar 

  24. Marí M, Fernández-Checa JC (2007) Sphingolipid signalling and liver diseases. Liver Int 27:440–450

    Article  PubMed  CAS  Google Scholar 

  25. Garcia-Ruiz C, Colell A, Mari M, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2003) Defective TNF-α-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 111:197–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, Mogil R, Paris F, Fuks Z, Schuchman EH, Kolesnick RN, Green DR (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663

    Article  CAS  PubMed  Google Scholar 

  27. Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Haussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    Article  CAS  PubMed  Google Scholar 

  28. Mari M, Colell A, Morales A, Paneda C, Varela-Nieto I, Garcia-Ruiz C, Fernandez-Checa JC (2004) Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest 113:895–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fernandez A, Matias N, Fucho R, Ribas V, Von Montfort C, Nuño N, Baulies A, Martinez L, Tarrats N, Mari M, Colell A, Morales A, Dubuquoy L, Mathurin P, Bataller R, Caballeria J, Elena M, Balsinde J, Kaplowitz N, Garcia-Ruiz C, Fernandez-Checa JC (2013) ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. J Hepatol 59:805–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fucho R, Martinez L, Baulies A, Torres S, Tarrats N, Fernandez A, Ribas V, Astudillo AM, Balsinde J, Garcia-Roves P, Elena M, Bergheim I, Lotersztajn S, Trautwein C, Appelqvist H, Paton AW, Paton JC, Czaja MJ, Kaplowitz N, Fernandez-Checa JC, Garcia-Ruiz C (2014) Asmase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage nonalcoholic steatohepatitis. J Hepatol 61(5):1126–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Paris F, Grassmé H, Cremesti A, Zager J, Fong Y, Haimovitz-Friedman A, Fuks Z, Gulbins E, Kolesnick R (2001) Natural ceramide reverses Fas resistance of acid sphingomyelinase −/− hepatocytes. J Biol Chem 276:8297–8305

    Article  CAS  PubMed  Google Scholar 

  32. Llacuna L, Mari M, Garcia-Ruiz C, Fernandez-Checa JC, Morales A (2006) Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology 44:561–572

    Article  CAS  PubMed  Google Scholar 

  33. Lee SH, Seo GS, Park P-H, Choi J-Y, Park YN, Kim HK, Chae K-S, Sohn DH (2003) Increased expression of O-acetyl disialoganglioside synthase during rat liver fibrogenesis relates to stellate cell activation. Biochem Biophys Res Commun 303:954–961

    Article  CAS  PubMed  Google Scholar 

  34. Huitema K, Van Den Dikkenberg J, Brouwers JFHM, Holthuis JCM (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23:33–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. D’angelo G, Polishchuk E, Tullio GD, Santoro M, Campli AD, Godi A, West G, Bielawski J, Chuang C-C, Van Der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67

    Article  PubMed  CAS  Google Scholar 

  36. Merritt WD, Morre DJ, Keenan TW (1978) Gangliosides of liver tumors induced by N-2-fluorenylacetamide. II. Alterations in biosynthetic enzymes. J Natl Cancer Inst 60:1329–1337

    CAS  PubMed  Google Scholar 

  37. Hassler DF, Bell RM (1993) Ceramidases: enzymology and metabolic roles. Adv Lipid Res 26:49–57

    CAS  PubMed  Google Scholar 

  38. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine and sphingosine-1-phosphate. Biochim Biophys Acta 1781:424–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Morales A, Paris R, Villanueva A, Llacuna L, Garcia-Ruiz C, Fernandez-Checa JC (2006) Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene 26:905–916

    Article  PubMed  CAS  Google Scholar 

  40. Ramirez De Molina A, De La Cueva A, Machado-Pinilla R, Rodriguez-Fanjul V, Gomez Del Pulgar T, Cebrian A, Perona R, Lacal JC (2012) Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition. Curr Cancer Drug Targets 12:617–624

    Article  CAS  PubMed  Google Scholar 

  41. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind JS, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  CAS  PubMed  Google Scholar 

  42. Perez GI, Knudson CM, Leykin L, Korsmeyer SJ, Tilly JL (1997) Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nat Med 3:1228–1232

    Article  CAS  PubMed  Google Scholar 

  43. Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503

    Article  CAS  PubMed  Google Scholar 

  44. Van Veldhoven PP (2000) Sphingosine-1-phosphate lyase. Methods Enzymol 311:244–254

    Article  PubMed  Google Scholar 

  45. Le Stunff H, Giussani P, Maceyka M, Lépine S, Milstien S, Spiegel S (2007) Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 282:34372–34380

    Article  PubMed  Google Scholar 

  46. Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520

    Article  CAS  PubMed  Google Scholar 

  47. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  CAS  PubMed  Google Scholar 

  48. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  49. García-Ruiz C, Colell A, Marí M, Morales A, Fernández-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species: role of mitochondrial glutathione. J Biol Chem 272:11369–11377

    Article  PubMed  Google Scholar 

  50. Gudz TI, Tserng K-Y, Hoppel CL (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272:24154–24158

    Article  CAS  PubMed  Google Scholar 

  51. Quillet-Mary A, Jaffrézou J-P, Mansat V, Bordier C, Naval J, Laurent G (1997) Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272:21388–21395

    Article  CAS  PubMed  Google Scholar 

  52. Dai Q, Liu J, Chen J, Durrant D, Mcintyre TM, Lee RM (2004) Mitochondrial ceramide increases in UV-irradiated HeLa cells and is mainly derived from hydrolysis of sphingomyelin. Oncogene 23:3650–3658

    Article  CAS  PubMed  Google Scholar 

  53. Birbes H, Luberto C, Hsu Y-T, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386:445–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. El Bawab S, Roddy P, Qian T, Bielawska A, Lemasters JJ, Hannun YA (2000) Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 275:21508–21513

    Article  PubMed  Google Scholar 

  55. Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382:527–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chipuk JE, Mcstay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lee H, Rotolo JA, Mesicek J, Penate-Medina T, Rimner A, Liao W-C, Yin X, Ragupathi G, Ehleiter D, Gulbins E, Zhai D, Reed JC, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2011) Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS One 6, e19783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Panneer Selvam S, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8:831–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Garcia-Ruiz C, Mato JM, Vance D, Kaplowitz N, Fernández-Checa JC (2015) Acid sphingomyelinase-ceramide system in steatohepatitis: a novel target regulating multiple pathways. J Hepatol 62(1):219–233

    Article  CAS  PubMed  Google Scholar 

  60. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  61. Lloyd-Evans E, Pelled D, Riebeling C, Bodennec J, De-Morgan A, Waller H, Schiffmann R, Futerman AH (2003) Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem 278:23594–23599

    Article  CAS  PubMed  Google Scholar 

  62. Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH (2003) Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J Biol Chem 278:29496–29501

    Article  CAS  PubMed  Google Scholar 

  63. Carracedo A, Lorente M, Egia A, Blázquez C, García S, Giroux V, Malicet C, Villuendas R, Gironella M, González-Feria L, Piris MÁ, Iovanna JL, Guzmán M, Velasco G (2006) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312

    Article  CAS  PubMed  Google Scholar 

  64. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245

    Article  CAS  PubMed  Google Scholar 

  65. Schubert KM, Scheid MP, Duronio V (2000) Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 275:13330–13335

    Article  CAS  PubMed  Google Scholar 

  66. Edinger AL (2009) Starvation in the midst of plenty: making sense of ceramide-induced autophagy by analyzing nutrient transporter expression. Biochem Soc Trans 37:253–258

    Article  CAS  PubMed  Google Scholar 

  67. Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci U S A 105:17402–17407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R, Codogno P (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of Beclin 1. J Biol Chem 279:18384–18391

    Article  CAS  PubMed  Google Scholar 

  69. Young MM, Kester M, Wang H-G (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54:5–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Jiang W, Ogretmen B (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841:783–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Li X, Xu M, Pitzer A, Xia M, Boini K, Li P-L, Zhang Y (2014) Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med 92:473–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Li ZZ, Berk M, Mcintyre TM, Gores GJ, Feldstein AE (2008) The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47:1495–1503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Petersen NHT, Olsen OD, Groth-Pedersen L, Ellegaard A-M, Bilgin M, Redmer S, Ostenfeld MS, Ulanet D, Dovmark TH, Lønborg A, Vindeløv SD, Hanahan D, Arenz C, Ejsing CS, Kirkegaard T, Rohde M, Nylandsted J, Jäättelä M (2013) Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24:379–393

    Article  CAS  PubMed  Google Scholar 

  74. Slotte JP (1999) Sphingomyelin–cholesterol interactions in biological and model membranes. Chem Phys Lipids 102:13–27

    Article  CAS  PubMed  Google Scholar 

  75. Ridgway ND (2000) Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim Biophys Acta 1484:129–141

    Article  CAS  PubMed  Google Scholar 

  76. Appelqvist H, Nilsson C, Garner B, Brown AJ, Kågedal K, Öllinger K (2011) Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. Am J Pathol 178:629–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Mas E, Danjoux M, Garcia V, Carpentier S, Ségui B, Levade T (2013) The pro-inflammatory action of tumour necrosis factor-α in non-alcoholic steatohepatitis is independent of the NSMAF gene product. Dig Liver Dis 45:147–154

    Article  CAS  PubMed  Google Scholar 

  78. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J (2006) Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55:2579–2587

    Article  CAS  PubMed  Google Scholar 

  79. Caballero F, Fernández A, Matías N, Martínez L, Fucho R, Elena M, Caballeria J, Morales A, Fernández-Checa JC, García-Ruiz C (2010) Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem 285:18528–18536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Moles A, Tarrats N, Morales A, Domínguez M, Bataller R, Caballería J, García-Ruiz C, Fernández-Checa JC, Marí M (2010) Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am J Pathol 177:1214–1224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Deevska GM, Rozenova KA, Giltiay NV, Chambers MA, White J, Boyanovsky BB, Wei J, Daugherty A, Smart EJ, Reid MB, Merrill AH, Nikolova-Karakashian M (2009) Acid sphingomyelinase deficiency prevents diet-induced hepatic triacylglycerol accumulation and hyperglycemia in mice. J Biol Chem 284:8359–8368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Quillin RC 3rd, Wilson GC, Nojima H, Freeman CM, Wang J, Schuster RM, Blanchard JA, Edwards MJ, Gandhi CR, Gulbins E, Lentsch AB (2014) Inhibition of acidic sphingomyelinase reduces established hepatic fibrosis in mice. Hepatol Res 45:305

    Article  PubMed  CAS  Google Scholar 

  83. Andrade CMB, Trindade VMT, Cardoso CCA, Ziulkoski AL, Trugo LC, Guaragna RM, Borojevic R, Guma FCR (2003) Changes of sphingolipid species in the phenotype conversion from myofibroblasts to lipocytes in hepatic stellate cells. J Cell Biochem 88:533–544

    Article  CAS  PubMed  Google Scholar 

  84. Gocht A, Rutter G, Kniep B (1998) Changed expression of 9-O-acetyl GD3 (CDw60) in benign and atypical proliferative lesions and carcinomas of the human breast. Histochem Cell Biol 110:217–229

    Article  CAS  PubMed  Google Scholar 

  85. Malisan F, Franchi L, Tomassini B, Ventura N, Condo I, Rippo MR, Rufini A, Liberati L, Nachtigall C, Kniep B, Testi R (2002) Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J Exp Med 196:1535–1541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. García-Ruiz C, Colell A, París R, Fernández-Checa JC (2000) Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J 14:847–858

    PubMed  Google Scholar 

  87. Garcı́a-Ruiz C, Colell A, Morales A, Calvo MA, Enrich C, Fernández-Checa JC (2002) Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-α. J Biol Chem 277:36443–36448

    Article  PubMed  CAS  Google Scholar 

  88. Rippo MR, Malisan F, Ravagnan L, Tomassini B, Condo I, Costantini P, Susin SA, Rufini A, Todaro M, Kroemer G, Testi R (2000) GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J 14:2047–2054

    Article  CAS  PubMed  Google Scholar 

  89. Selzner M, Bielawska A, Morse MA, Rüdiger HA, Sindram D, Hannun YA, Clavien P-A (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61:1233–1240

    CAS  PubMed  Google Scholar 

  90. Ullio C, Casas J, Brunk UT, Sala G, Fabriàs G, Ghidoni R, Bonelli G, Baccino FM, Autelli R (2012) Sphingosine mediates TNFα-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells. J Lipid Res 53:1134–1143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Lemmer ER, Vessey CJ, Gelderblom WC, Shephard EG, Van Schalkwyk DJ, Van Wijk RA, Marasas WF, Kirsch RE, Hall PL (2004) Fumonisin B1-induced hepatocellular and cholangiocellular tumors in male Fischer 344 rats: potentiating effects of 2-acetylaminofluorene on oval cell proliferation and neoplastic development in a discontinued feeding study. Carcinogenesis 25(7):1257–1264

    Article  CAS  PubMed  Google Scholar 

  92. Chuturgoon A, Phulukdaree A, Moodley D (2014) Fumonisin B1 induces global DNA hypomethylation in HepG2 cells - an alternative mechanism of action. Toxicology 315:65–69

    Article  CAS  PubMed  Google Scholar 

  93. Persson EC, Sewram V, Evans AA, London WT, Volkwyn Y, Shen YJ, Van Zyl JA, Chen G, Lin W, Shephard GS, Taylor PR, Fan JH, Dawsey SM, Qiao YL, McGlynn KA, Abnet CC (2012) Fumonisin B1 and risk of hepatocellular carcinoma in two Chinese cohorts. Food Chem Toxicol 50:679–683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 266(22):14486–14490

    CAS  PubMed  Google Scholar 

  95. He Q, Suzuki H, Sharma N, Sharma RP (2006) Ceramide synthase inhibition by fumonisin B1 treatment activates sphingolipid-metabolizing systems in mouse liver. Toxicol Sci 94(2):388–397

    Article  CAS  PubMed  Google Scholar 

  96. Wattenberg EV, Badria FA, Shier WT (1996) Activation of mitogen-activated protein kinase by the carcinogenic mycotoxin fumonisin B1. Biochem Biophys Res Commun 227(2):622–627

    Article  CAS  PubMed  Google Scholar 

  97. Fukuda H, Shima H, Vesonder RF, Tokuda H, Nishino H, Katoh S, Tamura S, Sugimjra T, Nagao M (1996) Inhibition of protein serine/threonine phosphatases by fumonisin B1, a mycotoxin. Biochem Biophys Res Commun 220(1):160–165

    Article  CAS  PubMed  Google Scholar 

  98. Revill K, Wang T, Lachenmayer A, Kojima K, Harrington A, Li J, Hoshida Y, Llovet JM, Powers S (2013) Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterology 145:1424–1435, e25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Chatzakos V, Rundlöf AK, Ahmed D, De Verdier PJ, Flygare J (2012) Inhibition of sphingosine kinase 1 enhances cytotoxicity, ceramide levels and ROS formation in liver cancer cells treated with selenite. Biochem Pharmacol 84:712–721

    Article  CAS  PubMed  Google Scholar 

  100. Jenkins RW, Idkowiak-Baldys J, Simbari F, Canals D, Roddy P, Riner CD, Clarke CJ, Hannun YA (2011) A novel mechanism of lysosomal acid sphingomyelinase maturation: requirement for carboxyl-terminal proteolytic processing. J Biol Chem 286:3777–3788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Simonaro CM, Park J-H, Eliyahu E, Shtraizent N, Mcgovern MM, Schuchman EH (2006) Imprinting at the SMPD1 locus: implications for acid sphingomyelinase-deficient Niemann-Pick disease. Am J Hum Genet 78:865–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Savic R, He X, Fiel I, Schuchman EH (2013) Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer. PLoS One 8, e65620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Osawa Y, Suetsugu A, Matsushima-Nishiwaki R, Yasuda I, Saibara T, Moriwaki H, Seishima M, Kozawa O (2013) Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. J Clin Invest 123:834–843

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Morré DJ, Wilkinson FE, Keenan TW (1990) Gangliosides depleted in plasma membrane are directed to internal membranes of rat hepatomas: Evidence for a glycolipid sorting defect in hepatocarcinogenesis. Biochem Biophys Res Commun 169:192–197

    Article  PubMed  Google Scholar 

  105. Huang X, Li Y, Zhang J, Xu Y, Tian Y, Ma K (2013) Ganglioside GM3 inhibits hepatoma cell motility via down-regulating activity of EGFR and PI3K/AKT signaling pathway. J Cell Biochem 114:1616–1624

    Article  CAS  PubMed  Google Scholar 

  106. Lluis JM, Llacuna L, Von MC, Barcena C, Enrich C, Morales A, Fernandez-Checa JC (2009) GD3 synthase overexpression sensitizes hepatocarcinoma cells to hypoxia and reduces tumor growth by suppressing the cSrc/NF-kappaB survival pathway. PLoS One 4, e8059

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Ruckhaberle E, Karn T, Rody A, Hanker L, Gatje R, Metzler D, Holtrich U, Kaufmann M (2009) Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol 135:1005–1013

    Article  PubMed  CAS  Google Scholar 

  108. Ryland LK, Doshi UA, Shanmugavelandy SS, Fox TE, Aliaga C, Broeg K, Baab KT, Young M, Khan O, Haakenson JK, Jarbadan NR, Liao J, Wang H-G, Feith DJ, Loughran TP, Liu X, Kester M (2013) C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia. PLoS One 8:e84648/1–e84648/15, 15 pp

    Article  CAS  Google Scholar 

  109. Tagaram HRS, Divittore NA, Barth BM, Kaiser JM, Avella D, Kimchi ET, Jiang Y, Isom HC, Kester M, Staveley-O’Carroll KF (2011) Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut 60:695–701

    Article  CAS  PubMed  Google Scholar 

  110. Adiseshaiah PP, Clogston JD, Mcleland CB, Rodriguez J, Potter TM, Neun BW, Skoczen SL, Shanmugavelandy SS, Kester M, Stern ST, Mcneil SE (2013) Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models. Cancer Lett 337:254–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Tran MA, Smith CD, Kester M, Robertson GP (2008) Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 14:3571–3581

    Article  CAS  PubMed  Google Scholar 

  112. Beljanski V, Lewis CS, Smith CD (2011) Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol Ther 11:524–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants SAF-2011-23031, SAF-2012-34831 from Plan Nacional de I+D, Spain, the center grant P50-AA-11999 Research Center for Liver and Pancreatic Diseases funded by NIAAA/NIH, a grant from Fundació Marató de TV3, La Mutua Madrileña, PI11/0325 (META) grant from the Instituto Salud Carlos III, and by the support of CIBERehd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. Fernández-Checa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Ruiz, C., Morales, A., Fernández-Checa, J.C. (2015). Role of Sphingolipids in Liver Cancer. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_9

Download citation

Publish with us

Policies and ethics