Skip to main content

Dysregulation of Sphingolipid Metabolism in Melanoma: Roles in Pigmentation, Cell Survival and Tumor Progression

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Over the last decades, the incidence of cutaneous malignant melanoma rapidly increased in Caucasian populations. Moreover, melanoma is a leading cause of cancer death and consequently has become a significant public health problem worldwide in fair-skinned populations. The discovery of the prevalent mutation BRAFV600E, which drives melanoma cell growth, has made this oncogenic protein an ideal therapeutic target. However, the beneficial effects of BRAF-directed therapies are usually short-lived due to the appearance of resistance, which leads to disease progression. This emphasizes the need to develop new therapeutic approaches that could overcome tumor relapse. Alterations in sphingolipid metabolism are associated with melanoma progression and represent an exploitable target for the development of novel chemotherapeutics. The aim of this review is to concentrate on the critical metabolites and enzymes that contribute to this metabolic dysregulation in melanoma, to discuss the emerging roles of sphingolipids on melanogenesis, tumor microenvironment and melanoma progression, and to highlight relevant therapeutic approaches applicable for melanoma treatment.

Author contributed equally with all other contributors

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-20750-6_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacKie RM, Hauschild A, Eggermont AM (2009) Epidemiology of invasive cutaneous melanoma. Ann Oncol 20(Suppl 6):vi1–vi7

    Article  PubMed Central  PubMed  Google Scholar 

  2. Nikolaou V, Stratigos AJ (2014) Emerging trends in the epidemiology of melanoma. Br J Dermatol 170:11–19

    Article  CAS  PubMed  Google Scholar 

  3. Flaherty K (2010) Advances in drug development. BRAF validation in melanoma. Clin Adv Hematol Oncol 8:31–34

    PubMed  Google Scholar 

  4. Graziani G, Tentori L, Navarra P (2012) Ipilimumab: a novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacol Res 65:9–22

    Article  CAS  PubMed  Google Scholar 

  5. Solit DB, Rosen N (2011) Resistance to BRAF inhibition in melanomas. N Engl J Med 364:772–774

    Article  CAS  PubMed  Google Scholar 

  6. Rabionet M, Gorgas K, Sandhoff R (2014) Ceramide synthesis in the epidermis. Biochim Biophys Acta 1841:422–434

    Article  CAS  PubMed  Google Scholar 

  7. Elias PM, Gruber R, Crumrine D et al (2014) Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta 1841:314–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sorli SC, Colie S, Albinet V et al (2013) The nonlysosomal beta-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB J 27:489–498

    Article  CAS  PubMed  Google Scholar 

  9. Landgren O, Turesson I, Gridley G et al (2007) Risk of malignant disease among 1525 adult male US Veterans with Gaucher disease. Arch Intern Med 167:1189–1194

    Article  PubMed  Google Scholar 

  10. Taddei TH, Kacena KA, Yang M et al (2009) The underrecognized progressive nature of N370S Gaucher disease and assessment of cancer risk in 403 patients. Am J Hematol 84:208–214

    Article  PubMed Central  PubMed  Google Scholar 

  11. Naumova E, Mihaylova A, Ivanova M et al (2007) Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother 56:95–100

    Article  CAS  PubMed  Google Scholar 

  12. Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pan T, Li X, Jankovic J (2011) The association between Parkinson’s disease and melanoma. Int J Cancer 128:2251–2260

    Article  CAS  PubMed  Google Scholar 

  14. Ron I, Rapaport D, Horowitz M (2010) Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum Mol Genet 19:3771–3781

    Article  CAS  PubMed  Google Scholar 

  15. Amos CI, Wang LE, Lee JE et al (2011) Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet 20:5012–5023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Xu X, Liu B, Zou P et al (2014) Silencing of LASS2/TMSG1 enhances invasion and metastasis capacity of prostate cancer cell. J Cell Biochem 115:731–743

    Article  CAS  PubMed  Google Scholar 

  17. Bizzozero L, Cazzato D, Cervia D et al (2014) Acid sphingomyelinase determines melanoma progression and metastatic behaviour via the microphtalmia-associated transcription factor signalling pathway. Cell Death Differ 21:507–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Haqq C, Nosrati M, Sudilovsky D et al (2005) The gene expression signatures of melanoma progression. Proc Natl Acad Sci U S A 102:6092–6097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Talantov D, Mazumder A, Yu JX et al (2005) Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 11:7234–7242

    Article  CAS  PubMed  Google Scholar 

  20. Colie S, Van Veldhoven PP, Kedjouar B et al (2009) Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res 69:9346–9353

    Article  CAS  PubMed  Google Scholar 

  21. Albinet V, Bats ML, Huwiler A et al (2014) Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells. Oncogene 33:3364–3373

    Article  CAS  PubMed  Google Scholar 

  22. Rebecca VW, Sondak VK, Smalley KS (2012) A brief history of melanoma: from mummies to mutations. Melanoma Res 22:114–122

    Article  PubMed Central  PubMed  Google Scholar 

  23. Carr A, Mullet A, Mazorra Z et al (2000) A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors. Hybridoma 19:241–247

    Article  CAS  PubMed  Google Scholar 

  24. Nicolae I, Nicolae CD, Coman OA et al (2011) Serum total gangliosides level: clinical prognostic implication. Rom J Morphol Embryol 52:1277–1281

    PubMed  Google Scholar 

  25. Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994

    Article  CAS  PubMed  Google Scholar 

  26. Gupta PB, Kuperwasser C, Brunet JP et al (2005) The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37:1047–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Koludrovic D, Davidson I (2013) MITF, the Janus transcription factor of melanoma. Future Oncol 9:235–244

    Article  CAS  PubMed  Google Scholar 

  28. Saha B, Singh SK, Sarkar C et al (2006) Transcriptional activation of tyrosinase gene by human placental sphingolipid. Glycoconj J 23:259–268

    Article  CAS  PubMed  Google Scholar 

  29. Saha B, Singh SK, Mallick S et al (2009) Sphingolipid-mediated restoration of Mitf expression and repigmentation in vivo in a mouse model of hair graying. Pigment Cell Melanoma Res 22:205–218

    Article  CAS  PubMed  Google Scholar 

  30. Singh SK, Sarkar C, Mallick S et al (2005) Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma. Pigment Cell Res 18:113–121

    Article  CAS  PubMed  Google Scholar 

  31. Mallick S, Singh SK, Sarkar C et al (2005) Human placental lipid induces melanogenesis by increasing the expression of tyrosinase and its related proteins in vitro. Pigment Cell Res 18:25–33

    Article  CAS  PubMed  Google Scholar 

  32. Kim DS, Hwang ES, Lee JE et al (2003) Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci 116:1699–1706

    Article  CAS  PubMed  Google Scholar 

  33. Kim DS, Park SH, Jeong YM et al (2011) Sphingosine-1-phosphate decreases melanin synthesis via microphthalmia-associated transcription factor phosphorylation through the S1P3 receptor subtype. J Pharm Pharmacol 63:409–416

    Article  CAS  PubMed  Google Scholar 

  34. Brandner JM, Haass NK (2013) Melanoma’s connections to the tumour microenvironment. Pathology 45:443–452

    Article  CAS  PubMed  Google Scholar 

  35. Botti G, Cerrone M, Scognamiglio G et al (2013) Microenvironment and tumor progression of melanoma: new therapeutic perspectives. J Immunotoxicol 10:235–252

    Article  CAS  PubMed  Google Scholar 

  36. Takabe K, Spiegel S (2014) Export of Sphingosine-1-Phosphate and Cancer Progression. J Lipid Res 55:1839–1846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Claffey KP, Brown LF, del Aguila LF et al (1996) Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 56:172–181

    CAS  PubMed  Google Scholar 

  38. Rodeck U, Becker D, Herlyn M (1991) Basic fibroblast growth factor in human melanoma. Cancer Cells 3:308–311

    CAS  PubMed  Google Scholar 

  39. Pomyje J, Zivny JH, Stopka T et al (2001) Angiopoietin-1, angiopoietin-2 and Tie-2 in tumour and non-tumour tissues during growth of experimental melanoma. Melanoma Res 11:639–643

    Article  CAS  PubMed  Google Scholar 

  40. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  41. Ugurel S, Rappl G, Tilgen W et al (2001) Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol 19:577–583

    CAS  PubMed  Google Scholar 

  42. Giatromanolaki A, Sivridis E, Kouskoukis C et al (2003) Hypoxia-inducible factors 1alpha and 2alpha are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res 13:493–501

    Article  CAS  PubMed  Google Scholar 

  43. Pastushenko I, Vermeulen PB, Van den Eynden GG et al (2014) Mechanisms of tumour vascularisation in cutaneous malignant melanoma: clinical implications. Br J Dermatol 171:220–233

    Article  CAS  PubMed  Google Scholar 

  44. Yester JW, Tizazu E, Harikumar KB et al (2011) Extracellular and intracellular sphingosine-1-phosphate in cancer. Cancer Metastasis Rev 30:577–597

    Article  CAS  PubMed  Google Scholar 

  45. Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  CAS  PubMed  Google Scholar 

  46. LaMontagne K, Littlewood-Evans A, Schnell C et al (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66:221–231

    Article  CAS  PubMed  Google Scholar 

  47. Takuwa Y, Du W, Qi X et al (2010) Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem 1:298–306

    Article  PubMed Central  PubMed  Google Scholar 

  48. Du W, Takuwa N, Yoshioka K et al (2010) S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res 70:772–781

    Article  CAS  PubMed  Google Scholar 

  49. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  50. Cirri P, Chiarugi P (2011) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31:195–208

    Article  Google Scholar 

  51. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kunz-Schughart LA, Knuechel R (2002) Tumor-associated fibroblasts (part I): active stromal participants in tumor development and progression? Histol Histopathol 17:599–621

    CAS  PubMed  Google Scholar 

  54. Ruiter D, Bogenrieder T, Elder D et al (2002) Melanoma-stroma interactions: structural and functional aspects. Lancet Oncol 3:35–43

    Article  CAS  PubMed  Google Scholar 

  55. Clark WH Jr, Elder DE, Guerry D et al (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1893–1904

    Article  PubMed  Google Scholar 

  56. Breslow A (1970) Thickness, cross-sectional areas and depth invasion in the prognosis of cutaneous melanoma. Ann Surg 172:902–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Smalley KS, Lioni M, Herlyn M (2005) Targeting the stromal fibroblasts: a novel approach to melanoma therapy. Expert Rev Anticancer Ther 5:1069–1078

    Article  CAS  PubMed  Google Scholar 

  58. Flach EH, Rebecca VW, Herlyn M et al (2011) Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol Pharm 8:2039–2049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Yamanaka M, Shegogue D, Pei H et al (2004) Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem 279:53994–54001

    Article  CAS  PubMed  Google Scholar 

  60. Gellings Lowe N, Swaney JS, Moreno KM et al (2009) Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. Cardiovasc Res 82:303–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Kono Y, Nishiuma T, Nishimura Y et al (2007) Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. Am J Respir Cell Mol Biol 37:395–404

    Article  CAS  PubMed  Google Scholar 

  62. Ponnusamy S, Selvam SP, Mehrotra S et al (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 4:761–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  64. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  CAS  PubMed  Google Scholar 

  66. Voskoboynik M, Arkenau HT (2014) Combination Therapies for the Treatment of Advanced Melanoma: A Review of Current Evidence. Biochem Res Int 2014:307059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Sun C, Wang L, Huang S et al (2014) Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508:118–122

    Article  CAS  PubMed  Google Scholar 

  69. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  70. Madhunapantula SV, Hengst J, Gowda R et al (2012) Targeting sphingosine kinase-1 to inhibit melanoma. Pigment Cell Melanoma Res 25:259–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Tran MA, Smith CD, Kester M et al (2008) Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 14:3571–3581

    Article  CAS  PubMed  Google Scholar 

  72. Yu T, Li J, Sun H (2010) C6 ceramide potentiates curcumin-induced cell death and apoptosis in melanoma cell lines in vitro. Cancer Chemother Pharmacol 66:999–1003

    Article  CAS  PubMed  Google Scholar 

  73. Ji C, Yang YL, He L et al (2012) Increasing ceramides sensitizes genistein-induced melanoma cell apoptosis and growth inhibition. Biochem Biophys Res Commun 421:462–467

    Article  CAS  PubMed  Google Scholar 

  74. Bektas M, Jolly PS, Muller C et al (2005) Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24:178–187

    Article  CAS  PubMed  Google Scholar 

  75. Salma Y, Lafont E, Therville N et al (2009) The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem Pharmacol 78:477–485

    Article  CAS  PubMed  Google Scholar 

  76. Guerrera M, Ladisch S (2003) N-butyldeoxynojirimycin inhibits murine melanoma cell ganglioside metabolism and delays tumor onset. Cancer Lett 201:31–40

    Article  CAS  PubMed  Google Scholar 

  77. Weiss M, Hettmer S, Smith P et al (2003) Inhibition of melanoma tumor growth by a novel inhibitor of glucosylceramide synthase. Cancer Res 63:3654–3658

    CAS  PubMed  Google Scholar 

  78. Deng W, Li R, Guerrera M et al (2002) Transfection of glucosylceramide synthase antisense inhibits mouse melanoma formation. Glycobiology 12:145–152

    Article  CAS  PubMed  Google Scholar 

  79. Gouaze V, Yu JY, Bleicher RJ et al (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 3:633–639

    CAS  PubMed  Google Scholar 

  80. Smith EL, Schuchman EH (2008) Acid sphingomyelinase overexpression enhances the antineoplastic effects of irradiation in vitro and in vivo. Mol Ther 16:1565–1571

    Article  CAS  PubMed  Google Scholar 

  81. Truman JP, Garcia-Barros M, Obeid LM et al (2014) Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta 1841:1174–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Bedia C, Casas J, Andrieu-Abadie N et al (2011) Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J Biol Chem 286:28200–28209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Pereira FV, Arruda DC, Figueiredo CR et al (2013) FTY720 induces apoptosis in B16F10-NEX2 murine melanoma cells, limits metastatic development in vivo, and modulates the immune system. Clinics (Sao Paulo) 68:1018–1027

    Article  Google Scholar 

  84. Perrotta C, Bizzozero L, Falcone S et al (2007) Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 67:7559–7564

    Article  CAS  PubMed  Google Scholar 

  85. Lee YS, Choi KM, Lee S et al (2012) Myriocin, a serine palmitoyltransferase inhibitor, suppresses tumor growth in a murine melanoma model by inhibiting de novo sphingolipid synthesis. Cancer Biol Ther 13:92–100

    Article  CAS  PubMed  Google Scholar 

  86. Lee YS, Choi KM, Choi MH et al (2011) Serine palmitoyltransferase inhibitor myriocin induces growth inhibition of B16F10 melanoma cells through G(2)/M phase arrest. Cell Prolif 44:320–329

    Article  CAS  PubMed  Google Scholar 

  87. Yu T, Li J, Qiu Y et al (2012) 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitates curcumin-induced melanoma cell apoptosis by enhancing ceramide accumulation, JNK activation, and inhibiting PI3K/AKT activation. Mol Cell Biochem 361:47–54

    Article  CAS  PubMed  Google Scholar 

  88. Salma Y, Ballereau S, Maaliki C et al (2010) Flexible and enantioselective access to Jaspine B and biologically active chain-modified analogues thereof. Org Biomol Chem 8:3227–3243

    Article  CAS  PubMed  Google Scholar 

  89. Raisova M, Goltz G, Bektas M et al (2002) Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes. FEBS Lett 516:47–52

    Article  CAS  PubMed  Google Scholar 

  90. Feng LX, Li M, Liu YJ et al (2014) Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int J Mol Sci 15:4201–4220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. van Lummel M, van Blitterswijk WJ, Vink SR et al (2011) Enriching lipid nanovesicles with short-chain glucosylceramide improves doxorubicin delivery and efficacy in solid tumors. FASEB J 25:280–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support by INSERM, Paul Sabatier University, Ligue Nationale Contre le Cancer (Equipe Labellisée 2013), the Italian Association of Cancer Research (AIRC, IG11365) and the French and Lebanese ministries of foreign affairs (MAEDI) and Higher Education and Research (MENESR) (PHC CEDRE, 30750VL) is gratefully acknowledged. D.G. is a recipient of a fellowship from Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Andrieu-Abadie Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garandeau, D., Mrad, M., Levade, T., Perrotta, C., Andrieu-Abadie, N., Diab-Assaf, M. (2015). Dysregulation of Sphingolipid Metabolism in Melanoma: Roles in Pigmentation, Cell Survival and Tumor Progression. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_6

Download citation

Publish with us

Policies and ethics