Skip to main content

Role of Sphingolipids in Non-melanoma Skin Cancer

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Non-melanoma skin cancer (NMSC) is the most common cancer in the world and its incidence continues to rise. NMSC includes two main types, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), both of which arise from malignant keratinocytes, the major cell type in the epidermis of the skin. Most cases of NMSC can be cured by existing new surgical techniques and chemo- or radiotherapy. However, NMSC remains a leading cause of cancer-related deaths in the United States and worldwide likely due to its extremely high incidence and recurrence rate, and limited availability of effective therapies for advanced cases. Therefore, we still need a better understanding of its pathogenesis and the development of novel and effective approaches to diagnosis, prevention, and treatment. Like many other cancers, NMSC results from dysregulation of the proliferation, differentiation, and apoptosis of cells that it originates from. Emerging evidence suggests that sphingolipids play an important role in regulating these cellular responses of keratinocytes and the homeostasis of the epidermis. In this review, we will discuss the role for sphingolipids and their metabolizing enzymes in regulating the proliferation, differentiation, and apoptosis of epidermal keratinocytes and the potential role of sphingolipids in NMSC prevention and/or therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3(6):444–451

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180(2):273–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Arora A, Attwood J (2009) Common skin cancers and their precursors. Surg Clin North Am 89(3):703–712

    Article  PubMed  Google Scholar 

  5. Youssef KK et al (2010) Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol 12(3):299–305

    CAS  PubMed  Google Scholar 

  6. Lapouge G et al (2011) Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci 108(18):7431–7436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ratushny V et al (2012) From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 122(2):464–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Acartürk TO, Edington H (2005) Nonmelanoma skin cancer. Clin Plast Surg 32(2):237–248

    Article  PubMed  Google Scholar 

  9. Eisemann N et al (2014) Non-melanoma skin cancer incidence and impact of skin cancer screening on incidence. J Invest Dermatol 134(1):43–50

    Article  CAS  PubMed  Google Scholar 

  10. Rogers HW et al (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146(3):283–287

    Article  PubMed  Google Scholar 

  11. Lallas A et al (2014) The dermatoscopic universe of basal cell carcinoma. Dermatol Pract Concept 4(3):11–24

    Article  PubMed Central  PubMed  Google Scholar 

  12. Netscher DT, Spira M (2004) Basal cell carcinoma: an overview of tumor biology and treatment. Plast Reconstr Surg 113(5):74e–94e

    Article  Google Scholar 

  13. Karia PS, Han J, Schmults CD (2013) Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J Am Acad Dermatol 68(6):957–966

    Article  PubMed  Google Scholar 

  14. Venura Samarasinghe VM (2012) Nonmelanoma skin cancer. J Cutan Aesthet Surg 5(1):3–10

    Article  PubMed Central  PubMed  Google Scholar 

  15. Martorell-Calatayud A et al (2013) Cutaneous squamous cell carcinoma: defining the high-risk variant. Actas Dermosifiliogr 104(5):367–379

    Article  CAS  PubMed  Google Scholar 

  16. Alam M, Ratner D (2001) Cutaneous squamous-cell carcinoma. N Engl J Med 344(13):975–983

    Article  CAS  PubMed  Google Scholar 

  17. de Gruijl FR (1999) Skin cancer and solar UV radiation. Eur J Cancer 35(14):2003–2009

    Article  PubMed  Google Scholar 

  18. Rollison DE et al (2012) Case-control study of smoking and non-melanoma skin cancer. Cancer Causes Control 23(2):245–254

    Article  PubMed  Google Scholar 

  19. Khan MMH et al (2003) Magnitude of arsenic toxicity in tube-well drinking water in Bangladesh and its adverse effects on human health including cancer: evidence from a review of the literature. Asian Pac J Cancer Prev 4(1):7–14

    CAS  PubMed  Google Scholar 

  20. Knobeloch LM, Zierold KM, Anderson HA (2006) Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin’s Fox River Valley. Journal of Health, Population and Nutrition, pp 206–213

    Google Scholar 

  21. Rastogi RP et al (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010(6551):592980–32

    PubMed Central  PubMed  Google Scholar 

  22. de Zwaan SE, Haass NK (2010) Genetics of basal cell carcinoma. Australas J Dermatol 51(2):81–92; quiz 93–94

    Article  PubMed  Google Scholar 

  23. Uribe P, Gonzalez S (2011) Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: molecular bases for EGFR-targeted therapy. Pathol Res Pract 207(6):337–342

    Article  CAS  PubMed  Google Scholar 

  24. Moloney FJ et al (2009) Hotspot mutation of Brahma in non-melanoma skin cancer. J Investig Dermatol 129(4):1012–1015

    Article  CAS  PubMed  Google Scholar 

  25. Patel GK et al (2011) Identification and Characterization of Tumor-Initiating Cells in Human Primary Cutaneous Squamous Cell Carcinoma. J Investig Dermatol 132(2):401–409

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Schwarz M, Munzel PA, Braeuning A (2013) Non-melanoma skin cancer in mouse and man. Arch Toxicol 87(5):783–98

    Article  CAS  PubMed  Google Scholar 

  27. Nagano T et al (1999) Overexpression of the human homologue of Drosophila patched (PTCH) in skin tumours: specificity for basal cell carcinoma. Br J Dermatol 140(2):287–290

    Article  CAS  PubMed  Google Scholar 

  28. Xie J et al (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391(6662):90–92

    Article  CAS  PubMed  Google Scholar 

  29. Brash DE et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88(22):10124–10128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Dajee M et al (2003) NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421(6923):639–643

    Article  CAS  PubMed  Google Scholar 

  31. Malanchi I et al (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452(7187):650–653

    Article  CAS  PubMed  Google Scholar 

  32. Sotiropoulou PA, Blanpain C (2012) Development and Homeostasis of the Skin Epidermis. Cold Spring Harb Perspect Biol 4(7):a008383–a008383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353(1370):831–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Christiano AM (2004) Epithelial stem cells: stepping out of their niche. Cell 118(5):530–2

    Article  CAS  PubMed  Google Scholar 

  35. Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci U S A 100(Suppl 1):11830–5, Epub 2003 Aug 11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bikle DD, Xie Z, Tu C-L (2012) Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab 7(4):461–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Madison KC (2003) Barrier function of the skin: "la raison d'etre" of the epidermis. J Invest Dermatol 121(2):231–41

    Article  CAS  PubMed  Google Scholar 

  38. Gniadecki R (1998) Regulation of keratinocyte proliferation. Gen Pharmacol 30(5):619–22

    Article  CAS  PubMed  Google Scholar 

  39. Jetten AM, Harvat BL (1997) Epidermal differentiation and squamous metaplasia: from stem cell to cell death. J Dermatol 24(11):711–25

    Article  CAS  PubMed  Google Scholar 

  40. Koch PJ, Roop DR (2004) The role of keratins in epidermal development and homeostasis—going beyond the obvious. J Invest Dermatol 123(5):x–xi

    Article  CAS  PubMed  Google Scholar 

  41. Coderch L et al (2003) Ceramides and skin function. Am J Clin Dermatol 4(2):107–29

    Article  PubMed  Google Scholar 

  42. Fartasch M (2004) The epidermal lamellar body: a fascinating secretory organelle. J Invest Dermatol 122(5):XI–XII

    Article  CAS  PubMed  Google Scholar 

  43. Kalinin AE, Kajava AV, Steinert PM (2002) Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays 24(9):789–800

    Article  CAS  PubMed  Google Scholar 

  44. Marks R (2004) The stratum corneum barrier: the final frontier. J Nutr 134(8 Suppl):2017S–2021S

    CAS  PubMed  Google Scholar 

  45. Feingold KR (2007) The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 13:13

    Google Scholar 

  46. Mizutani Y et al (2009) Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91(6):784–790

    Article  CAS  PubMed  Google Scholar 

  47. Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62(5):347–356

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Meckfessel MH, Brandt S (2014) The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J Am Acad Dermatol 71(1):177–84

    Article  CAS  PubMed  Google Scholar 

  49. Rabionet M, Gorgas K, Sandhoff R (2014) Ceramide synthesis in the epidermis. Biochim Biophys Acta 1841(3):422–434

    Article  CAS  PubMed  Google Scholar 

  50. Farwanah H et al (2007) Separation and mass spectrometric characterization of covalently bound skin ceramides using LC/APCI-MS and Nano-ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 852(1-2):562–70

    Article  CAS  PubMed  Google Scholar 

  51. Masukawa Y et al (2008) Characterization of overall ceramide species in human stratum corneum. J Lipid Res 49(7):1466–76

    Article  CAS  PubMed  Google Scholar 

  52. Jennemann R et al (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21(3):586–608

    Article  CAS  PubMed  Google Scholar 

  53. Imokawa G (2014) Role of ceramide in the barrier function of the stratum corneum, implications for the pathogenesis of atopic dermatitis. J Clin Exp Dermatol Res 05(01):1–12

    Article  CAS  Google Scholar 

  54. Nakajima K et al (2013) Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model. J Investig Dermatol 133(11):2555–2565

    Article  CAS  PubMed  Google Scholar 

  55. Yanagi T et al (2010) Self-improvement of keratinocyte differentiation defects during skin maturation in ABCA12-deficient harlequin ichthyosis model mice. Am J Pathol 177(1):106–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Baroni A et al (2012) Structure and function of the epidermis related to barrier properties. Clin Dermatol 30(3):257–262

    Article  PubMed  Google Scholar 

  57. Jost M, Kari C, Rodeck U (2000) The EGF receptor—an essential regulator of multiple epidermal functions. Eur J Dermatol 10(7):505–510

    CAS  PubMed  Google Scholar 

  58. Jost M et al (2001) Epidermal growth factor receptor-dependent control of keratinocyte survival and Bcl-xL expression through a MEK-dependent pathway. J Biol Chem 276(9):6320–6326

    Article  CAS  PubMed  Google Scholar 

  59. Hashimoto K (2000) Regulation of keratinocyte function by growth factors. J Dermatol Sci 24(Suppl 1):S46–50

    Article  CAS  PubMed  Google Scholar 

  60. Piepkorn M, Lo C, Plowman G (1994) Amphiregulin-dependent proliferation of cultured human keratinocytes: autocrine growth, the effects of exogenous recombinant cytokine, and apparent requirement for heparin-like glycosaminoglycans. J Cell Physiol 159(1):114–120

    Article  CAS  PubMed  Google Scholar 

  61. Piepkorn M, Pittelkow MR, Cook PW (1998) Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors. J Invest Dermatol 111(5):715–721

    Article  CAS  PubMed  Google Scholar 

  62. Schneider MR et al (2008) Betacellulin regulates hair follicle development and hair cycle induction and enhances angiogenesis in wounded skin. J Investig Dermatol 128(5):1256–1265

    Article  CAS  PubMed  Google Scholar 

  63. Müller EJ et al (2008) Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Investig Dermatol 128(3):501–516

    Article  PubMed  CAS  Google Scholar 

  64. Bikle DD (2004) Vitamin D regulated keratinocyte differentiation. J Cell Biochem 92(3):436–44

    Article  CAS  PubMed  Google Scholar 

  65. Dubas LE, Ingraffea A (2013) Nonmelanoma skin cancer. Facial Plast Surg Clin North Am 21:43–53

    Article  PubMed  Google Scholar 

  66. Degen M et al (2012) MAPK/ERK-dependent translation factor hyperactivation and dysregulated laminin γ2 expression in oral dysplasia and squamous cell carcinoma. Am J Pathol 180(6):2462–2478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Pillai S et al (1991) Uncoupling of the calcium-sensing mechanism and differentiation in squamous carcinoma cell lines. Exp Cell Res 192(2):567–73

    Article  CAS  PubMed  Google Scholar 

  68. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781(9):424–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Holleran WM, Takagi Y, Uchida Y (2006) Epidermal sphingolipids: Metabolism, function, and roles in skin disorders. FEBS Lett 580(23):5456–5466

    Article  CAS  PubMed  Google Scholar 

  70. Lampe MA, Williams ML, Elias PM (1983) Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 24(2):131–140

    CAS  PubMed  Google Scholar 

  71. Takeda S et al (2006) Apoptosis occurs via the ceramide recycling pathway in human HaCaT keratinocytes. J Biochem 139(2):255–62

    Article  CAS  PubMed  Google Scholar 

  72. Cuvillier O et al (2001) Sphingosine generation, cytochrome c release, and activation of caspase-7 in doxorubicin-induced apoptosis of MCF7 breast adenocarcinoma cells. Cell Death Differ 8(2):162–171

    Article  CAS  PubMed  Google Scholar 

  73. Nava VE et al (2000) Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res 60(16):4468–74

    CAS  PubMed  Google Scholar 

  74. Cuvillier O et al (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381(6585):800–3

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura H et al (1998) Survival by Mac-1-mediated adherence and anoikis in phorbol ester-treated HL-60 cells. J Biol Chem 273(25):15345–51

    Article  CAS  PubMed  Google Scholar 

  76. Hamada K et al (1998) Involvement of Mac-1-mediated adherence and sphingosine 1-phosphate in survival of phorbol ester-treated U937 cells. Biochem Biophys Res Commun 244(3):745–50

    Article  CAS  PubMed  Google Scholar 

  77. Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585(2-3):153–62

    Article  CAS  PubMed  Google Scholar 

  78. Kim S et al (2006) Phytosphingosine stimulates the differentiation of human keratinocytes and inhibits TPA-induced inflammatory epidermal hyperplasia in hairless mouse skin. Mol Med 12(1-3):17–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Tolleson WH et al (1999) Fumonisin B1 induces apoptosis in cultured human keratinocytes through sphinganine accumulation and ceramide depletion. Int J Oncol 14(5):833–43

    CAS  PubMed  Google Scholar 

  80. Paragh G et al (2008) Novel sphingolipid derivatives promote keratinocyte differentiation. Exp Dermatol 9:9

    Google Scholar 

  81. Sigruener A et al (2013) Effects of sphingoid bases on the sphingolipidome in early keratinocyte differentiation. Exp Dermatol 22(10):677–679

    Article  CAS  PubMed  Google Scholar 

  82. Lee MJ et al (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279(5356):1552–5

    Article  CAS  PubMed  Google Scholar 

  83. Hla T et al (2000) Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Ann N Y Acad Sci 905:16–24

    Article  CAS  PubMed  Google Scholar 

  84. Hla T (2001) Sphingosine 1-phosphate receptors. Prostaglandins 64(1-4):135–142

    Article  CAS  PubMed  Google Scholar 

  85. Spiegel S, Milstien S (2000) Sphingosine-1-phosphate: signaling inside and out. FEBS Lett 476(1-2):55–7

    Article  CAS  PubMed  Google Scholar 

  86. Moriue T et al (2013) Sphingosine 1-phosphate attenuates peroxide-induced apoptosis in HaCaT cells cultured in vitro. Clin Exp Dermatol 38(6):638–45

    Article  CAS  PubMed  Google Scholar 

  87. Schmitz EI et al (2012) Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P(3). Mol Cell Biochem 371(1-2):165–76

    Article  CAS  PubMed  Google Scholar 

  88. Hammer S et al (2004) Glucocorticoids mediate differential anti-apoptotic effects in human fibroblasts and keratinocytes via sphingosine-1-phosphate formation. J Cell Biochem 91(4):840–51

    Article  CAS  PubMed  Google Scholar 

  89. Vogler R et al (2003) Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing. J Invest Dermatol 120(4):693–700

    Article  CAS  PubMed  Google Scholar 

  90. Sauer B et al (2004) Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. J Biol Chem 279(37):38471–9, Epub 2004 Jul 09

    Article  CAS  PubMed  Google Scholar 

  91. Kim DS et al (2004) Sphingosine-1-phosphate inhibits human keratinocyte proliferation via Akt/protein kinase B inactivation. Cell Signal 16(1):89–95

    Article  CAS  PubMed  Google Scholar 

  92. Schuppel M et al (2008) Sphingosine 1-Phosphate Restrains Insulin-Mediated Keratinocyte Proliferation via Inhibition of Akt through the S1P(2) Receptor Subtype. J Invest Dermatol 24:24

    Google Scholar 

  93. Schaper K et al (2013) Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis. J Dermatol Sci 71(1):29–36

    Article  CAS  PubMed  Google Scholar 

  94. Schüppel M et al (2008) Sphingosine 1-Phosphate Restrains Insulin-Mediated Keratinocyte Proliferation via Inhibition of Akt through the S1P2 Receptor Subtype. J Investig Dermatol 128(7):1747–1756

    Article  PubMed  CAS  Google Scholar 

  95. Brodesser S, Kolter T (2011) Dihydroceramide desaturase inhibition by a cyclopropanated dihydroceramide analog in cultured keratinocytes. J Lipids 2011:724015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Kato E, Takahashi N (2012) Improvement by sodium dl-α-tocopheryl-6-O-phosphate treatment of moisture-retaining ability in stratum corneum through increased ceramide levels. Bioorg Med Chem 20(12):3837–3842

    Article  CAS  PubMed  Google Scholar 

  97. el Bawab S et al (2002) Ceramidases in the regulation of ceramide levels and function. Subcell Biochem 36:187–205

    Article  PubMed  Google Scholar 

  98. Mao C et al (2000) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 275(10):6876–84

    Article  CAS  PubMed  Google Scholar 

  99. Mao C et al (2001) Cloning and characterization of a novel human alkaline ceramidase: a mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 16:16

    Google Scholar 

  100. Mao C et al (2003) Cloning and characterization of a mouse endoplasmic reticulum alkaline ceramidase: an enzyme that preferentially regulates metabolism of very long chain ceramides. J Biol Chem 278(33):31184–91

    Article  CAS  PubMed  Google Scholar 

  101. Houben E et al (2006) Differentiation-associated expression of ceramidase isoforms in cultured keratinocytes and epidermis. J Lipid Res 47(5):1063–70

    Article  CAS  PubMed  Google Scholar 

  102. Sun W et al (2007) Upregulation of the human alkaline ceramidase 1 and acid ceramidase mediates calcium-induced differentiation of epidermal keratinocytes. J Investig Dermatol 128(2):389–97

    Article  PubMed  CAS  Google Scholar 

  103. Kohama T et al (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273(37):23722–8

    Article  CAS  PubMed  Google Scholar 

  104. Liu H et al (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275(26):19513–20

    Article  CAS  PubMed  Google Scholar 

  105. Johnson KR et al (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J Biol Chem 278(36):34541–34547

    Article  CAS  PubMed  Google Scholar 

  106. Ogawa C et al (2003) Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem 278(2):1268–1272

    Article  CAS  PubMed  Google Scholar 

  107. Hong JH et al (2008) K6PC-5, a direct activator of sphingosine kinase 1, promotes epidermal differentiation through intracellular Ca2+ signaling. J Investig Dermatol 128(9):2166–2178

    Article  CAS  PubMed  Google Scholar 

  108. Allende ML et al (2013) Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermalhomeostasis. J Biol Chem 288(25):18381–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Boukamp P (2005) UV-induced skin cancer: similarities–variations. J Dtsch Dermatol Ges 3(7):493–503

    Article  PubMed  Google Scholar 

  110. Schwarz A et al (1995) Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-alpha in the formation of sunburn cells. J Invest Dermatol 104(6):922–927

    Article  CAS  PubMed  Google Scholar 

  111. Magnoni C et al (2002) Ultraviolet B radiation induces activation of neutral and acidic sphingomyelinases and ceramide generation in cultured normal human keratinocytes. Toxicol In Vitro 16(4):349–355

    Article  CAS  PubMed  Google Scholar 

  112. Uchida Y et al (2010) Hydrolytic pathway protects against ceramide-induced apoptosis in keratinocytes exposed to UVB. J Investig Dermatol 130(10):2472–2480

    Article  CAS  PubMed  Google Scholar 

  113. Charruyer A et al (2008) Decreased ceramide transport protein (CERT) function alters sphingomyelin production following UVB irradiation. J Biol Chem 283(24):16682–16692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Firnhaber JM (2012) Diagnosis and treatment of Basal cell and squamous cell carcinoma. Am Fam Physician 86(2):161–168

    PubMed  Google Scholar 

  115. Hulyalkar R, Rakkhit T, Garcia-Zuazaga J (2011) The role of radiation therapy in the management of skin cancers. Dermatol Clin 29(2):287–96, x

    Article  CAS  PubMed  Google Scholar 

  116. Bonner JA et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578

    Article  CAS  PubMed  Google Scholar 

  117. De Smaele E et al (2012) Hedgehog signaling pathway and its targets for treatment in basal cell carcinoma. Journal of Experimental, Pharmacology, pp 173–13

    Google Scholar 

  118. Soulieres D (2003) Multicenter Phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 22(1):77–85

    Article  CAS  Google Scholar 

  119. Aureli M et al (2014) Exploring the link between ceramide and ionizing radiation. Glycoconj J 31(6-7):449–459

    Article  CAS  PubMed  Google Scholar 

  120. Sugiki H et al (2000) C2-ceramide induces apoptosis in a human squamous cell carcinoma cell line. Br J Dermatol 143(6):1154–1163

    Article  CAS  PubMed  Google Scholar 

  121. Birt DF et al (1998) Inhibition of skin carcinomas but not papillomas by sphingosine, N-methylsphingosine, and N-acetylsphingosine. Nutr Cancer 31(2):119–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health Grants R01CA104834, R01CA163825, and P01CA097132 to C.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cungui Mao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, CL., Mao, C. (2015). Role of Sphingolipids in Non-melanoma Skin Cancer. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_5

Download citation

Publish with us

Policies and ethics