Skip to main content

Role of Sphingolipids in Hematological Malignancies: Lymphoproliferative Disorders

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Among sphingolipids, ceramide was first reported to induce cell differentiation and death in human leukemia cells. The localization of signaling ceramide, the putative different functions of ceramide species, and their metabolic regulation have been investigated in regard to induction of cell death of many types of cancers. Recently not only ceramide but also sphingosine-1-phosphate (S1P), sphingomyelin (SM) and ceramide-1-phosphate are being appreciated to act as biological lipid regulators of many cell functions. It is critical to understand the role of sphingolipids in the regulation of the balance between proliferation and cell death for developing novel therapies for hematological malignant diseases. Programmed cell death is mainly classified into four categories: apoptosis, regulated necrosis/necroptosis, pyroptosis and autophagic cell death. In this chapter, we summarize the role of ceramide and other sphingolipids in programmed cell death, proliferation/survival, differentiation, migration and secretion of lymphoid lineage cells to discuss potential applications of sphingolipid-based treatment for lymphoproliferative disorders such as acute and chronic lymphoid leukemia, malignant lymphoma and multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264:19076–19080

    CAS  PubMed  Google Scholar 

  2. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  CAS  PubMed  Google Scholar 

  3. Quintans J, Kilkus J, McShan CL, Gottschalk AR, Dawson G (1994) Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation. Biochem Biophys Res Commun 202:710–714

    Article  CAS  PubMed  Google Scholar 

  4. Gottschalk AR, McShan CL, Kilkus J, Dawson G, Quintans J (1995) Resistance to anti-IgM-induced apoptosis in a WEHI-231 subline is due to insufficient production of ceramide. Eur J Immunol 25:1032–1038

    Article  CAS  PubMed  Google Scholar 

  5. Tepper CG, Jayadev S, Liu B, Bielawska A, Wolff R, Yonehara S, Hannun YA, Seldin MF (1995) Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci U S A 92:8443–8447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chmura SJ, Nodzenski E, Beckett MA, Kufe DW, Quintans J, Weichselbaum RR (1997) Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 57:1270–1275

    CAS  PubMed  Google Scholar 

  7. Dbaibo GS, Pushkareva MY, Jayadev S, Schwarz JK, Horowitz JM, Obeid LM, Hannun YA (1995) Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci U S A 92:1347–1351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gulbins E, Bissonnette R, Mahboubi A, Martin S, Nishioka W, Brunner T, Baier G, Baier-Bitterlich G, Byrd C, Lang F et al (1995) FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 2:341–351

    Article  CAS  PubMed  Google Scholar 

  9. Belka C, Wiegmann K, Adam D, Holland R, Neuloh M, Herrmann F, Kronke M, Brach MA (1995) Tumor necrosis factor (TNF)-alpha activates c-raf-1 kinase via the p55 TNF receptor engaging neutral sphingomyelinase. EMBO J 14:1156–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Adibhatla RM, Hatcher JF, Gusain A (2011) Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 37:671–679

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Lee JY, Hannun YA, Obeid LM (1996) Ceramide inactivates cellular protein kinase Calpha. J Biol Chem 271:13169–13174

    Article  CAS  PubMed  Google Scholar 

  12. Sawai H, Okazaki T, Takeda Y, Tashima M, Sawada H, Okuma M, Kishi S, Umehara H, Domae N (1997) Ceramide-induced translocation of protein kinase C-delta and -epsilon to the cytosol. Implications in apoptosis. J Biol Chem 272:2452–2458

    Article  CAS  PubMed  Google Scholar 

  13. Fang W, Rivard JJ, Ganser JA, LeBien TW, Nath KA, Mueller DL, Behrens TW (1995) Bcl-xL rescues WEHI 231 B lymphocytes from oxidant-mediated death following diverse apoptotic stimuli. J Immunol 155:66–75

    CAS  PubMed  Google Scholar 

  14. Smyth MJ, Perry DK, Zhang J, Poirier GG, Hannun YA, Obeid LM (1996) prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem J 316(Pt 1):25–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA (1996) Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci U S A 93:5325–5328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Phillips DC, Allen K, Griffiths HR (2002) Synthetic ceramides induce growth arrest or apoptosis by altering cellular redox status. Arch Biochem Biophys 407:15–24

    Article  CAS  PubMed  Google Scholar 

  17. Gamen S, Marzo I, Anel A, Pineiro A, Naval J (1996) CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells. FEBS Lett 390:232–237

    Article  CAS  PubMed  Google Scholar 

  18. Mizushima N, Koike R, Kohsaka H, Kushi Y, Handa S, Yagita H, Miyasaka N (1996) Ceramide induces apoptosis via CPP32 activation. FEBS Lett 395:267–271

    Article  CAS  PubMed  Google Scholar 

  19. Geley S, Hartmann BL, Kofler R (1997) Ceramides induce a form of apoptosis in human acute lymphoblastic leukemia cells that is inhibited by Bcl-2, but not by CrmA. FEBS Lett 400:15–18

    Article  CAS  PubMed  Google Scholar 

  20. Tepper AD, de Vries E, van Blitterswijk WJ, Borst J (1999) Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J Clin Invest 103:971–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Terrisse AD, Bezombes C, Lerouge S, Laurent G, Jaffrezou JP (2002) Daunorubicin- and Ara-C-induced interphasic apoptosis of human type II leukemia cells is caspase-8-independent. Biochim Biophys Acta 1584:99–103

    Article  CAS  PubMed  Google Scholar 

  22. Dbaibo GS, Pushkareva MY, Rachid RA, Alter N, Smyth MJ, Obeid LM, Hannun YA (1998) p53-dependent ceramide response to genotoxic stress. J Clin Invest 102:329–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cremesti A, Paris F, Grassme H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R (2001) Ceramide enables fas to cap and kill. J Biol Chem 276:23954–23961

    Article  CAS  PubMed  Google Scholar 

  24. Grassme H, Schwarz H, Gulbins E (2001) Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284:1016–1030

    Article  CAS  PubMed  Google Scholar 

  25. Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470

    Article  CAS  PubMed  Google Scholar 

  26. Miyaji M, Jin ZX, Yamaoka S, Amakawa R, Fukuhara S, Sato SB, Kobayashi T, Domae N, Mimori T, Bloom ET, Okazaki T, Umehara H (2005) Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 202:249–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Santambrogio L, Cuervo AM (2011) Chasing the elusive mammalian microautophagy. Autophagy 7:652–654

    Article  PubMed  Google Scholar 

  28. Gianchecchi E, Delfino DV, Fierabracci A (2014) Recent insights on the putative role of autophagy in autoimmune diseases. Autoimmun Rev 13:231–241

    Article  CAS  PubMed  Google Scholar 

  29. Buchser WJ, Laskow TC, Pavlik PJ, Lin HM, Lotze MT (2012) Cell-mediated autophagy promotes cancer cell survival. Cancer Res 72:2970–2979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 116:2161–2172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Taniguchi M, Kitatani K, Kondo T, Hashimoto-Nishimura M, Asano S, Hayashi A, Mitsutake S, Igarashi Y, Umehara H, Takeya H, Kigawa J, Okazaki T (2012) Regulation of autophagy and its associated cell death by “sphingolipid rheostat”: reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J Biol Chem 287:39898–39910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jiang W, Ogretmen B (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841:783–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Young MM, Kester M, Wang HG (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54:5–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Thon L, Mohlig H, Mathieu S, Lange A, Bulanova E, Winoto-Morbach S, Schutze S, Bulfone-Paus S, Adam D (2005) Ceramide mediates caspase-independent programmed cell death. FASEB J 19:1945–1956

    Article  CAS  PubMed  Google Scholar 

  35. Chromik J, Safferthal C, Serve H, Fulda S (2014) Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett 344:101–109

    Article  CAS  PubMed  Google Scholar 

  36. Sawai H (2014) Characterization of TNF-induced caspase-independent necroptosis. Leuk Res 38:706–713

    Article  CAS  PubMed  Google Scholar 

  37. Kroesen BJ, Jacobs S, Pettus BJ, Sietsma H, Kok JW, Hannun YA, de Leij LF (2003) BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome. J Biol Chem 278:14723–14731

    Article  CAS  PubMed  Google Scholar 

  38. Ch’en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM (2011) Mechanisms of necroptosis in T cells. J Exp Med 208:633–641

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Ryland LK, Doshi UA, Shanmugavelandy SS, Fox TE, Aliaga C, Broeg K, Baab KT, Young M, Khan O, Haakenson JK, Jarbadan NR, Liao J, Wang HG, Feith DJ, Loughran TP Jr, Liu X, Kester M (2013) C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia. PLoS One 8, e84648

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Asano S, Kitatani K, Taniguchi M, Hashimoto M, Zama K, Mitsutake S, Igarashi Y, Takeya H, Kigawa J, Hayashi A, Umehara H, Okazaki T (2012) Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol Cell Biol 32:3242–3252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Taniguchi M, Okazaki T (2014) The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders. Biochim Biophys Acta 1841:692–703

    Article  CAS  PubMed  Google Scholar 

  42. Arana L, Ordonez M, Ouro A, Rivera IG, Gangoiti P, Trueba M, Gomez-Munoz A (2013) Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. Am J Physiol Endocrinol Metab 304:E1213–E1226

    Article  CAS  PubMed  Google Scholar 

  43. Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    Article  CAS  PubMed  Google Scholar 

  44. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  CAS  PubMed  Google Scholar 

  45. Green JA, Suzuki K, Cho B, Willison LD, Palmer D, Allen CD, Schmidt TH, Xu Y, Proia RL, Coughlin SR, Cyster JG (2011) The sphingosine 1-phosphate receptor S1P(2) maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat Immunol 12:672–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y, Baratin M, Tomasello E, Vivier E (2007) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    Article  CAS  PubMed  Google Scholar 

  47. Bieberich E (2012) Ceramide and sphingosine-1-phosphate signaling in embryonic stem cell differentiation. Methods Mol Biol 874:177–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kue CS, Lim HX, Jung MY, Hong HJ, Cho D, Kim TS (2013) C6-ceramide in combination with transforming growth factor-beta enhances Treg cell differentiation and stable FoxP3 expression in vitro and in vivo. Immunobiology 218:952–959

    Article  CAS  PubMed  Google Scholar 

  49. Borchardt RA, Lee WT, Kalen A, Buckley RH, Peters C, Schiff S, Bell RM (1994) Growth-dependent regulation of cellular ceramides in human T-cells. Biochim Biophys Acta 1212:327–336

    Article  CAS  PubMed  Google Scholar 

  50. Flores I, Martinez AC, Hannun YA, Merida I (1998) Dual role of ceramide in the control of apoptosis following IL-2 withdrawal. J Immunol 160:3528–3533

    CAS  PubMed  Google Scholar 

  51. Shakor AB, Taniguchi M, Kitatani K, Hashimoto M, Asano S, Hayashi A, Nomura K, Bielawski J, Bielawska A, Watanabe K, Kobayashi T, Igarashi Y, Umehara H, Takeya H, Okazaki T (2011) Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J Biol Chem 286:36053–36062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Stoffel B, Bauer P, Nix M, Deres K, Stoffel W (1998) Ceramide-independent CD28 and TCR signaling but reduced IL-2 secretion in T cells of acid sphingomyelinase-deficient mice. Eur J Immunol 28:874–880

    Article  CAS  PubMed  Google Scholar 

  53. Herz J, Pardo J, Kashkar H, Schramm M, Kuzmenkina E, Bos E, Wiegmann K, Wallich R, Peters PJ, Herzig S, Schmelzer E, Kronke M, Simon MM, Utermohlen O (2009) Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol 10:761–768

    Article  CAS  PubMed  Google Scholar 

  54. Schroder M, Richter C, Juan MH, Maltusch K, Giegold O, Quintini G, Pfeilschifter JM, Huwiler A, Radeke HH (2011) The sphingosine kinase 1 and S1P1 axis specifically counteracts LPS-induced IL-12p70 production in immune cells of the spleen. Mol Immunol 48:1139–1148

    Article  PubMed  CAS  Google Scholar 

  55. Schaper K, Kietzmann M, Baumer W (2014) Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Mol Immunol 59:10–18

    Article  CAS  PubMed  Google Scholar 

  56. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776

    Article  CAS  PubMed  Google Scholar 

  57. Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78:1005–1015

    Article  CAS  PubMed  Google Scholar 

  58. Cifone MG, Roncaioli P, De Maria R, Camarda G, Santoni A, Ruberti G, Testi R (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J 14:5859–5868

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Brenner B, Ferlinz K, Grassme H, Weller M, Koppenhoefer U, Dichgans J, Sandhoff K, Lang F, Gulbins E (1998) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ 5:29–37

    Article  CAS  PubMed  Google Scholar 

  60. Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199

    Article  CAS  PubMed  Google Scholar 

  61. Kirschnek S, Paris F, Weller M, Grassme H, Ferlinz K, Riehle A, Fuks Z, Kolesnick R, Gulbins E (2000) CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J Biol Chem 275:27316–27323

    CAS  PubMed  Google Scholar 

  62. Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, Mogil R, Paris F, Fuks Z, Schuchman EH, Kolesnick RN, Green DR (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663

    Article  CAS  PubMed  Google Scholar 

  63. Boucher LM, Wiegmann K, Futterer A, Pfeffer K, Machleidt T, Schutze S, Mak TW, Kronke M (1995) CD28 signals through acidic sphingomyelinase. J Exp Med 181:2059–2068

    Article  CAS  PubMed  Google Scholar 

  64. Zhang P, Liu B, Jenkins GM, Hannun YA, Obeid LM (1997) Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem 272:9609–9612

    Article  CAS  PubMed  Google Scholar 

  65. Liu B, Hannun YA (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem 272:16281–16287

    Article  CAS  PubMed  Google Scholar 

  66. Tonnetti L, Veri MC, Bonvini E, D’Adamio L (1999) A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J Exp Med 189:1581–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Chmura SJ, Nodzenski E, Kharbanda S, Pandey P, Quintans J, Kufe DW, Weichselbaum RR (2000) Down-regulation of ceramide production abrogates ionizing radiation-induced cytochrome c release and apoptosis. Mol Pharmacol 57:792–796

    CAS  PubMed  Google Scholar 

  68. Tepper AD, Ruurs P, Borst J, van Blitterswijk WJ (2001) Effect of overexpression of a neutral sphingomyelinase on CD95-induced ceramide production and apoptosis. Biochem Biophys Res Commun 280:634–639

    Article  CAS  PubMed  Google Scholar 

  69. Sawai H, Domae N, Nagan N, Hannun YA (1999) Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem 274:38131–38139

    Article  CAS  PubMed  Google Scholar 

  70. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414

    Article  CAS  PubMed  Google Scholar 

  71. Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ, Hannun YA (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem 275:9078–9084

    Article  CAS  PubMed  Google Scholar 

  72. Chalfant CE, Ogretmen B, Galadari S, Kroesen BJ, Pettus BJ, Hannun YA (2001) FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem 276:44848–44855

    Article  CAS  PubMed  Google Scholar 

  73. Jenkins GM, Cowart LA, Signorelli P, Pettus BJ, Chalfant CE, Hannun YA (2002) Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J Biol Chem 277:42572–42578

    Article  CAS  PubMed  Google Scholar 

  74. Kroesen BJ, Pettus B, Luberto C, Busman M, Sietsma H, de Leij L, Hannun YA (2001) Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J Biol Chem 276:13606–13614

    CAS  PubMed  Google Scholar 

  75. Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T (2004) Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem 279:18688–18693

    Article  CAS  PubMed  Google Scholar 

  76. Separovic D, Hanada K, Maitah MY, Nagy B, Hang I, Tainsky MA, Kraniak JM, Bielawski J (2007) Sphingomyelin synthase 1 suppresses ceramide production and apoptosis post-photodamage. Biochem Biophys Res Commun 358:196–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Separovic D, Semaan L, Tarca AL, Awad Maitah MY, Hanada K, Bielawski J, Villani M, Luberto C (2008) Suppression of sphingomyelin synthase 1 by small interference RNA is associated with enhanced ceramide production and apoptosis after photodamage. Exp Cell Res 314:1860–1868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Lafont E, Milhas D, Carpentier S, Garcia V, Jin ZX, Umehara H, Okazaki T, Schulze-Osthoff K, Levade T, Benoist H, Segui B (2010) Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ 17:642–654

    Article  CAS  PubMed  Google Scholar 

  79. Lafont E, Dupont R, Andrieu-Abadie N, Okazaki T, Schulze-Osthoff K, Levade T, Benoist H, Segui B (2012) Ordering of ceramide formation and caspase-9 activation in CD95L-induced Jurkat leukemia T cell apoptosis. Biochim Biophys Acta 1821:684–693

    Article  CAS  PubMed  Google Scholar 

  80. Tepper AD, Diks SH, van Blitterswijk WJ, Borst J (2000) Glucosylceramide synthase does not attenuate the ceramide pool accumulating during apoptosis induced by CD95 or anti-cancer regimens. J Biol Chem 275:34810–34817

    Article  CAS  PubMed  Google Scholar 

  81. Taguchi Y, Kondo T, Watanabe M, Miyaji M, Umehara H, Kozutsumi Y, Okazaki T (2004) Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase. Blood 104:3285–3293

    Article  CAS  PubMed  Google Scholar 

  82. Grazide S, Terrisse AD, Lerouge S, Laurent G, Jaffrezou JP (2004) Cytoprotective effect of glucosylceramide synthase inhibition against daunorubicin-induced apoptosis in human leukemic cell lines. J Biol Chem 279:18256–18261

    Article  CAS  PubMed  Google Scholar 

  83. Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261:12604–12609

    CAS  PubMed  Google Scholar 

  84. Pushkareva M, Khan WA, Alessenko AV, Sahyoun N, Hannun YA (1992) Sphingosine activation of protein kinases in Jurkat T cells. In vitro phosphorylation of endogenous protein substrates and specificity of action. J Biol Chem 267:15246–15251

    CAS  PubMed  Google Scholar 

  85. Chao R, Khan W, Hannun YA (1992) Retinoblastoma protein dephosphorylation induced by D-erythro-sphingosine. J Biol Chem 267:23459–23462

    CAS  PubMed  Google Scholar 

  86. Pushkareva M, Chao R, Bielawska A, Merrill AH Jr, Crane HM, Lagu B, Liotta D, Hannun YA (1995) Stereoselectivity of induction of the retinoblastoma gene product (pRb) dephosphorylation by D-erythro-sphingosine supports a role for pRb in growth suppression by sphingosine. Biochemistry 34:1885–1892

    Article  CAS  PubMed  Google Scholar 

  87. Dbaibo GS, Wolff RA, Obeid LM, Hannun YA (1995) Activation of a retinoblastoma-protein-dependent pathway by sphingosine. Biochem J 310(Pt 2):453–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Nakamura S, Kozutsumi Y, Sun Y, Miyake Y, Fujita T, Kawasaki T (1996) Dual roles of sphingolipids in signaling of the escape from and onset of apoptosis in a mouse cytotoxic T-cell line, CTLL-2. J Biol Chem 271:1255–1257

    Article  CAS  PubMed  Google Scholar 

  89. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  CAS  PubMed  Google Scholar 

  90. Cuvillier O, Rosenthal DS, Smulson ME, Spiegel S (1998) Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J Biol Chem 273:2910–2916

    Article  CAS  PubMed  Google Scholar 

  91. Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, Spiegel S (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147:545–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Cuvillier O, Levade T (2001) Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 98:2828–2836

    Article  CAS  PubMed  Google Scholar 

  93. Taha TA, Osta W, Kozhaya L, Bielawski J, Johnson KR, Gillanders WE, Dbaibo GS, Hannun YA, Obeid LM (2004) Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53. J Biol Chem 279:20546–20554

    Article  CAS  PubMed  Google Scholar 

  94. van Blitterswijk WJ, Klarenbeek JB, van der Luit AH, Alderliesten MC, van Lummel M, Verheij M (2009) Fas/CD95 down-regulation in lymphoma cells through acquired alkyllysophospholipid resistance: partial role of associated sphingomyelin deficiency. Biochem J 425:225–234

    Article  PubMed  CAS  Google Scholar 

  95. Dong L, Watanabe K, Itoh M, Huan CR, Tong XP, Nakamura T, Miki M, Iwao H, Nakajima A, Sakai T, Kawanami T, Sawaki T, Masaki Y, Fukushima T, Fujita Y, Tanaka M, Yano M, Okazaki T, Umehara H (2012) CD4+ T-cell dysfunctions through the impaired lipid rafts ameliorate concanavalin A-induced hepatitis in sphingomyelin synthase 1-knockout mice. Int Immunol 24:327–337

    Article  CAS  PubMed  Google Scholar 

  96. Lafont E, Kitatani K, Okazaki T, Segui B (2011) Regulation of death and growth signals at the plasma membrane by sphingomyelin synthesis: implications for hematological malignancies. Recent Pat Anticancer Drug Discov 6:324–333

    Article  CAS  PubMed  Google Scholar 

  97. De Maria R, Lenti L, Malisan F, d’Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277:1652–1655

    Article  PubMed  Google Scholar 

  98. De Maria R, Rippo MR, Schuchman EH, Testi R (1998) Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 187:897–902

    Article  PubMed Central  PubMed  Google Scholar 

  99. de Leon J, Fernandez A, Clavell M, Labrada M, Bebelagua Y, Mesa C, Fernandez LE (2008) Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+CD25- effector and naturally occurring CD4+CD25+ regulatory T cells function. Int Immunol 20:591–600

    Article  PubMed  CAS  Google Scholar 

  100. Itoh M, Kitano T, Watanabe M, Kondo T, Yabu T, Taguchi Y, Iwai K, Tashima M, Uchiyama T, Okazaki T (2003) Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin Cancer Res 9:415–423

    CAS  PubMed  Google Scholar 

  101. Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Sweetser DA, McClatchey AI, Bernard OA, Look AT, Bell DW, Scadden DT, Haber DA (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111:4716–4722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Dbaibo GS, Kfoury Y, Darwiche N, Panjarian S, Kozhaya L, Nasr R, Abdallah M, Hermine O, El-Sabban M, de The H, Bazarbachi A (2007) Arsenic trioxide induces accumulation of cytotoxic levels of ceramide in acute promyelocytic leukemia and adult T-cell leukemia/lymphoma cells through de novo ceramide synthesis and inhibition of glucosylceramide synthase activity. Haematologica 92:753–762

    Article  CAS  PubMed  Google Scholar 

  103. Ardail D, Maalouf M, Boivin A, Chapet O, Bodennec J, Rousson R, Rodriguez-Lafrasse C (2009) Diversity and complexity of ceramide generation after exposure of jurkat leukemia cells to irradiation. Int J Radiat Oncol Biol Phys 73:1211–1218

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi E, Inanami O, Asanuma T, Kuwabara M (2006) Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells. J Radiat Res 47:19–25

    Article  CAS  PubMed  Google Scholar 

  105. Morad SA, Levin JC, Tan SF, Fox TE, Feith DJ, Cabot MC (2013) Novel off-target effect of tamoxifen–inhibition of acid ceramidase activity in cancer cells. Biochim Biophys Acta 1831:1657–1664

    Article  CAS  PubMed  Google Scholar 

  106. Biswal SS, Datta K, Acquaah-Mensah GK, Kehrer JP (2000) Changes in ceramide and sphingomyelin following fludarabine treatment of human chronic B-cell leukemia cells. Toxicology 154:45–53

    Article  CAS  PubMed  Google Scholar 

  107. Hammadi M, Youinou P, Tempescul A, Tobon G, Berthou C, Bordron A, Pers JO (2011) Membrane microdomain sphingolipids are required for anti-CD20-induced death of chronic lymphocytic leukemia B cells. Haematologica 97:288–296

    Article  PubMed  CAS  Google Scholar 

  108. Capitani N, Patrussi L, Trentin L, Lucherini OM, Cannizzaro E, Migliaccio E, Frezzato F, Gattazzo C, Forconi F, Pelicci P, Semenzato G, Baldari CT (2012) S1P1 expression is controlled by the pro-oxidant activity of p66Shc and is impaired in B-CLL patients with unfavorable prognosis. Blood 120:4391–4399

    Article  CAS  PubMed  Google Scholar 

  109. Wallington-Beddoe CT, Powell JA, Tong D, Pitson SM, Bradstock KF, Bendall LJ (2014) Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. Cancer Res 74:2803–2815

    Article  CAS  PubMed  Google Scholar 

  110. Mondal S, Mandal C, Sangwan R, Chandra S, Mandal C (2010) Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol Cancer 9:239

    PubMed Central  PubMed  Google Scholar 

  111. Wallington-Beddoe CT, Hewson J, Bradstock KF, Bendall LJ (2011) FTY720 produces caspase-independent cell death of acute lymphoblastic leukemia cells. Autophagy 7:707–715

    Article  CAS  PubMed  Google Scholar 

  112. Liu Q, Zhao X, Frissora F, Ma Y, Santhanam R, Jarjoura D, Lehman A, Perrotti D, Chen CS, Dalton JT, Muthusamy N, Byrd JC (2008) FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111:275–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Wallington-Beddoe CT, Don AS, Hewson J, Qiao Q, Papa RA, Lock RB, Bradstock KF, Bendall LJ (2012) Disparate in vivo efficacy of FTY720 in xenograft models of Philadelphia positive and negative B-lineage acute lymphoblastic leukemia. PLoS One 7, e36429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Liao A, Broeg K, Fox T, Tan SF, Watters R, Shah MV, Zhang LQ, Li Y, Ryland L, Yang J, Aliaga C, Dewey A, Rogers A, Loughran K, Hirsch L, Jarbadan NR, Baab KT, Liao J, Wang HG, Kester M, Desai D, Amin S, Loughran TP Jr, Liu X (2011) Therapeutic efficacy of FTY720 in a rat model of NK-cell leukemia. Blood 118:2793–2800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Matsuoka Y, Nagahara Y, Ikekita M, Shinomiya T (2003) A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br J Pharmacol 138:1303–1312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Yasui H, Hideshima T, Raje N, Roccaro AM, Shiraishi N, Kumar S, Hamasaki M, Ishitsuka K, Tai YT, Podar K, Catley L, Mitsiades CS, Richardson PG, Albert R, Brinkmann V, Chauhan D, Anderson KC (2005) FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res 65:7478–7484

    Article  CAS  PubMed  Google Scholar 

  117. Shah MV, Zhang R, Irby R, Kothapalli R, Liu X, Arrington T, Frank B, Lee NH, Loughran TP Jr (2008) Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes. Blood 112:770–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Liu X, Ryland L, Yang J, Liao A, Aliaga C, Watts R, Tan SF, Kaiser J, Shanmugavelandy SS, Rogers A, Loughran K, Petersen B, Yuen J, Meng F, Baab KT, Jarbadan NR, Broeg K, Zhang R, Liao J, Sayers TJ, Kester M, Loughran TP Jr (2010) Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116:4192–4201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Watters RJ, Fox TE, Tan SF, Shanmugavelandy S, Choby JE, Broeg K, Liao J, Kester M, Cabot MC, Loughran TP, Liu X (2013) Targeting glucosylceramide synthase synergizes with C6-ceramide nanoliposomes to induce apoptosis in natural killer cell leukemia. Leuk Lymphoma 54:1288–1296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Bezombes C, Grazide S, Garret C, Fabre C, Quillet-Mary A, Muller S, Jaffrezou JP, Laurent G (2004) Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood 104:1166–1173

    Article  CAS  PubMed  Google Scholar 

  121. Meyer zum Buschenfelde C, Feuerstacke Y, Gotze KS, Scholze K, Peschel C (2008) GM1 expression of non-Hodgkin’s lymphoma determines susceptibility to rituximab treatment. Cancer Res 68:5414–5422

    Article  PubMed  CAS  Google Scholar 

  122. Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M, Claxton DF, Yun JK (2008) Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 49:948–954

    Article  CAS  PubMed  Google Scholar 

  123. Gustafsson K, Sander B, Bielawski J, Hannun YA, Flygare J (2009) Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Mol Cancer Res 7:1086–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Gustafsson K, Christensson B, Sander B, Flygare J (2006) Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win, 55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol Pharmacol 70:1612–1620

    Article  CAS  PubMed  Google Scholar 

  125. Michael JM, Lavin MF, Watters DJ (1997) Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling. Cancer Res 57:3600–3605

    CAS  PubMed  Google Scholar 

  126. Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T, Bonstaff K, Del Valle L, Rodriguez P, Flemington E, Voelkel-Johnson C, Smith CD, Ogretmen B, Parsons C (2014) Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 13:154–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Kluk MJ, Ryan KP, Wang B, Zhang G, Rodig SJ, Sanchez T (2013) Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: assessment of expression and role in cell migration. Lab Invest 93:462–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Nishimura H, Akiyama T, Monobe Y, Matsubara K, Igarashi Y, Abe M, Sugihara T, Sadahira Y (2010) Expression of sphingosine-1-phosphate receptor 1 in mantle cell lymphoma. Mod Pathol 23:439–449

    Article  CAS  PubMed  Google Scholar 

  129. Cattoretti G, Mandelbaum J, Lee N, Chaves AH, Mahler AM, Chadburn A, Dalla-Favera R, Pasqualucci L, MacLennan AJ (2009) Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res 69:8686–8692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Pavlova EV, Wang SZ, Archer J, Dekker N, Aerts JM, Karlsson S, Cox TM (2013) B cell lymphoma and myeloma in murine Gaucher’s disease. J Pathol 231:88–97

    Article  CAS  PubMed  Google Scholar 

  131. Li QF, Zhu HY, Yang YF, Liu J, Xiao FJ, Zhang QW, Wu CT, Wang H, Wang LS (2010) Prokineticin-1/endocrine gland-derived vascular endothelial growth factor is a survival factor for human multiple myeloma cells. Leuk Lymphoma 51:1902–1912

    Article  CAS  PubMed  Google Scholar 

  132. Garcia-Bernal D, Redondo-Munoz J, Dios-Esponera A, Chevre R, Bailon E, Garayoa M, Arellano-Sanchez N, Gutierrez NC, Hidalgo A, Garcia-Pardo A, Teixido J (2013) Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving alpha4beta1 integrin function. J Pathol 229:36–48

    Article  CAS  PubMed  Google Scholar 

  133. Li QF, Wu CT, Duan HF, Sun HY, Wang H, Lu ZZ, Zhang QW, Liu HJ, Wang LS (2007) Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis. Br J Haematol 138:632–639

    Article  CAS  PubMed  Google Scholar 

  134. Li QF, Wu CT, Guo Q, Wang H, Wang LS (2008) Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem Biophys Res Commun 371:159–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Takeda Science Foundation (2012–2016), and performed with the joint research project with Shalome Co. (2012–2014), Ltd., and with ONO Pharmaceutical Co. Ltd. (2011–2014). This work was also supported in part by a grant from Strategic Research Foundation Grant-aided Project for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) (No. S1201004, 2012–2016) and from Kanazawa Medical University (2012–2013), Mizutani Foundation for Glycoscience (2013–2014), the Collaborative Research from Kanazawa Medical University (C2012-4, C2013-1. 2012–2013). We greatly appreciate Drs. Asano S. and Shakor A.B. kindly granting us the use of Figs. 4 and 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Okazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sawai, H., Taniguchi, M., Okazaki, T. (2015). Role of Sphingolipids in Hematological Malignancies: Lymphoproliferative Disorders. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_2

Download citation

Publish with us

Policies and ethics