Advertisement

Sphingoproteomics: Proteomic Strategies to Examine Sphingolipid Biology

  • Bruce A. Stanley
  • Tye Deering
  • Todd E. FoxEmail author

Abstract

Interest in sphingolipids has increased in the past couple of decades as the number of biological activities identified has greatly expanded. These include roles in inflammation, proliferation, survival, and metastasis. Sphingolipids can exert these effects through an increasing number of identified interacting cellular targets. To facilitate the understanding of the intrinsic biology of sphingolipids and the development of sphingolipid-based therapeutics, further knowledge is needed. Various analytical protocols assist this endeavor, with mass spectrometry-based techniques seeing increasing usage, especially for measuring steady-state lipid levels. The area of mass spectrometry-based proteomics is also seeing increased usage in the study of lipid biology. This chapter provides an introduction to hypothesis-generating and hypothesis-testing protein-based analytical approaches to investigate sphingolipids and sphingolipid-metabolizing enzymes. These tools can serve to identify how sphingolipids regulate the proteome, to define how post-translational modifications control enzymatic activity, to identify protein–protein and protein–lipid interactions as well as to facilitate inhibitor development, among other concepts. These approaches can help delineate the roles and consequences of perturbations of sphingolipid metabolism in cancer.

Keywords

Sphingolipids Ceramide Sphingosine kinase Proteomics Mass spectrometry Interactions Post-translational modifications 

Notes

Acknowledgments

This work was supported by the American Cancer Society and P01 CA171983. The authors would like to thank Kevin Fox for the creation of Fig. 1.

References

  1. 1.
    Hartmann D et al (2012) Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 44(4):620–628PubMedCrossRefGoogle Scholar
  2. 2.
    Karahatay S et al (2007) Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett 256(1):101–111PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Saddoughi SA et al (2011) Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C(1)(8)-ceramide as a novel biomarker for monitoring response. Clin Cancer Res 17(18):6097–6105PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Alberg AJ et al (2013) Plasma sphingolipids and lung cancer: a population-based, nested case-control study. Cancer Epidemiol Biomarkers Prev 22(8):1374–1382PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Jiang Y et al (2013) Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules 3(3):435–448PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Fillet M et al (2005) Differential expression of proteins in response to ceramide-mediated stress signal in colon cancer cells by 2-D gel electrophoresis and MALDI-TOF-MS. J Proteome Res 4(3):870–880PubMedCrossRefGoogle Scholar
  8. 8.
    Renert AF et al (2009) The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells. J Proteome Res 8(10):4810–4822PubMedCrossRefGoogle Scholar
  9. 9.
    Kota V et al (2013) 2’-hydroxy C16-ceramide induces apoptosis-associated proteomic changes in C6 glioma cells. J Proteome Res 12(10):4366–4367PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Parent N et al (2009) Proteomic analysis of enriched lysosomes at early phase of camptothecin-induced apoptosis in human U-937 cells. J Proteomics 72(6):960–973PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kim SY et al (2009) Proteomic identification of proteins translocated to membrane microdomains upon treatment of fibroblasts with the glycosphingolipid, C8-beta-D-lactosylceramide. Proteomics 9(18):4321–4328PubMedCrossRefGoogle Scholar
  12. 12.
    Everley RA et al (2013) Increasing throughput in targeted proteomics assays: 54-plex quantitation in a single mass spectrometry run. Anal Chem 85(11):5340–5346PubMedCrossRefGoogle Scholar
  13. 13.
    McClatchy DB, Yates JR 3rd (2008) Stable isotope labeling in mammals (SILAM). Methods Mol Biol 1156:133–146CrossRefGoogle Scholar
  14. 14.
    Pozniak Y, Geiger T (2014) Design and application of super-SILAC for proteome quantification. Methods Mol Biol 1188:281–291PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou F et al (2013) Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat Commun 4:2171PubMedCentralPubMedGoogle Scholar
  16. 16.
    Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268PubMedCrossRefGoogle Scholar
  17. 17.
    Lundby A et al (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3:876PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hao P, Guo T, Sze SK (2011) Simultaneous analysis of proteome, phospho- and glycoproteome of rat kidney tissue with electrostatic repulsion hydrophilic interaction chromatography. PLoS One 6(2), e16884PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Mertins P et al (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10(7):634–637PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gillet LC et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Momin AA et al (2011) A method for visualization of “omic” datasets for sphingolipid metabolism to predict potentially interesting differences. J Lipid Res 52(6):1073–1083PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lundberg E et al (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Schwanhausser B et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342PubMedCrossRefGoogle Scholar
  24. 24.
    Gerber SA et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6945PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Anderson NL et al (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3(2):235–244PubMedCrossRefGoogle Scholar
  26. 26.
    Bereman MS et al (2012) The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics 12(8):1134–1141PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mohammed Y et al (2014) PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J Proteomics 106C:51–161Google Scholar
  28. 28.
    Wilhelm M et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587PubMedCrossRefGoogle Scholar
  29. 29.
    Kim MS et al (2014) A draft map of the human proteome. Nature 509(7502):575–581PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zeidan YH, Hannun YA (2007) Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation. J Biol Chem 282(15):11549–11561PubMedCrossRefGoogle Scholar
  31. 31.
    Parent N et al (2011) Protein kinase C-delta isoform mediates lysosome labilization in DNA damage-induced apoptosis. Int J Oncol 38(2):313–324PubMedCentralPubMedGoogle Scholar
  32. 32.
    Pitson SM et al (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22(20):5491–5500PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Franzen R et al (2002) Nitric oxide induces degradation of the neutral ceramidase in rat renal mesangial cells and is counterregulated by protein kinase C. J Biol Chem 277(48):46184–46190PubMedCrossRefGoogle Scholar
  34. 34.
    Galadari S et al (2006) Identification of a novel amidase motif in neutral ceramidase. Biochem J 393(Pt 3):687–695PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Tada E et al (2010) Activation of ceramidase and ceramide kinase by vanadate via a tyrosine kinase-mediated pathway. J Pharmacol Sci 114(4):420–432PubMedCrossRefGoogle Scholar
  36. 36.
    Chen WQ et al (2010) Ceramide kinase profiling by mass spectrometry reveals a conserved phosphorylation pattern downstream of the catalytic site. J Proteome Res 9(1):420–429PubMedCrossRefGoogle Scholar
  37. 37.
    Ferlinz K et al (2001) Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem 276(38):35352–35360PubMedCrossRefGoogle Scholar
  38. 38.
    Schulze H, Schepers U, Sandhoff K (2007) Overexpression and mass spectrometry analysis of mature human acid ceramidase. Biol Chem 388(12):1333–1343PubMedCrossRefGoogle Scholar
  39. 39.
    Rodriguez J et al (2008) Does trypsin cut before proline? J Proteome Res 7(1):300–305PubMedCrossRefGoogle Scholar
  40. 40.
    Stahelin RV et al (2005) The mechanism of membrane targeting of human sphingosine kinase 1. J Biol Chem 280(52):43030–43038PubMedCrossRefGoogle Scholar
  41. 41.
    Pflieger D et al (2008) Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation. Mol Cell Proteomics 7(2):326–346PubMedCrossRefGoogle Scholar
  42. 42.
    Glibert P et al (2015) Phospho-iTRAQ: assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry. J Proteome Res 14(2):839–849PubMedCrossRefGoogle Scholar
  43. 43.
    Frese CK et al (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res 10(5):2377–2388PubMedCrossRefGoogle Scholar
  44. 44.
    Kumagai K, Kawano-Kawada M, Hanada K (2014) Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells. J Biol Chem 289(15):10748–10760PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Cvetkovic A et al (2010) Microbial metalloproteomes are largely uncharacterized. Nature 466(7307):779–782PubMedCrossRefGoogle Scholar
  46. 46.
    Lothian A et al (2013) Metalloproteomics: principles, challenges and applications to neurodegeneration. Front Aging Neurosci 5:35PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Yannone SM et al (2012) Metals in biology: defining metalloproteomes. Curr Opin Biotechnol 23(1):89–95PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Fujita T et al (2004) Delta-catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1. Biochem J 382(Pt 2):717–723PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Leclercq TM et al (2008) Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem 283(15):9606–9614PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Sun J et al (2006) FHL2/SLIM3 decreases cardiomyocyte survival by inhibitory interaction with sphingosine kinase-1. Circ Res 99(5):468–476PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Fukuda Y et al (2004) Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim Biophys Acta 1636(1):12–21PubMedCrossRefGoogle Scholar
  52. 52.
    Lacana E et al (2002) Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J Biol Chem 277(36):32947–32953PubMedCrossRefGoogle Scholar
  53. 53.
    Maceyka M et al (2004) Aminoacylase 1 is a sphingosine kinase 1-interacting protein. FEBS Lett 568(1–3):30–34PubMedCrossRefGoogle Scholar
  54. 54.
    Zebol JR et al (2009) The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1. Int J Biochem Cell Biol 41(4):822–827PubMedCrossRefGoogle Scholar
  55. 55.
    Hayashi S et al (2002) Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. J Biol Chem 277(36):33319–33324PubMedCrossRefGoogle Scholar
  56. 56.
    Maceyka M et al (2008) Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol Cell Biol 28(18):5687–5697PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Olivera A et al (1998) Purification and characterization of rat kidney sphingosine kinase. J Biol Chem 273(20):12576–12583PubMedCrossRefGoogle Scholar
  58. 58.
    Jarman KE et al (2010) Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 285(1):483–492PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Yamane D et al (2009) Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 284(20):13648–13659PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Barr RK et al (2008) Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 283(50):34994–35002PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Urtz N et al (2004) Early activation of sphingosine kinase in mast cells and recruitment to FcepsilonRI are mediated by its interaction with Lyn kinase. Mol Cell Biol 24(19):8765–8777PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Olivera A et al (2006) IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 281(5):2515–2525PubMedCrossRefGoogle Scholar
  63. 63.
    Xia P et al (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 277(10):7996–8003PubMedCrossRefGoogle Scholar
  64. 64.
    Gamble JR et al (2009) Sphingosine kinase-1 associates with integrin {alpha}V{beta}3 to mediate endothelial cell survival. Am J Pathol 175(5):2217–2225PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Laviad EL et al (2012) Modulation of ceramide synthase activity via dimerization. J Biol Chem 287(25):21025–21033PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Azuma N et al (1994) Stimulation of acid ceramidase activity by saposin D. Arch Biochem Biophys 311(2):354–357PubMedCrossRefGoogle Scholar
  67. 67.
    Adam-Klages S et al (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86(6):937–947PubMedCrossRefGoogle Scholar
  68. 68.
    Ahn KH et al (2013) Identification of heat shock protein 60 as a regulator of Neutral Sphingomyelinase 2 and its role in Dopamine uptake. PLoS One 8(6), e67216PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Miteva YV, Budayeva HG, Cristea IM (2013) Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 85(2):749–768PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Paoletti AC et al (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 103(50):18928–18933PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Wang M et al (2012) PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteomics 11(8):492–500PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Teo G et al (2014) SAINTexpress: improvements and additional features in significance analysis of INTeractome software. J Proteomics 100:37–43PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Choi H et al (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8(1):70–73PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Sowa ME et al (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2):389–403PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Rinner O et al (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotechnol 25(3):345–352PubMedCrossRefGoogle Scholar
  76. 76.
    Jager S et al (2011) Global landscape of HIV-human protein complexes. Nature 481(7381):365–370PubMedCentralPubMedGoogle Scholar
  77. 77.
    Tackett AJ et al (2005) I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4(5):1752–1756PubMedCrossRefGoogle Scholar
  78. 78.
    Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3(12):981–983PubMedCrossRefGoogle Scholar
  79. 79.
    Mellacheruvu D et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10(8):730–736PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Wang X, Huang L (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics 7(1):46–57PubMedCrossRefGoogle Scholar
  81. 81.
    Jurneczko E, Barran PE (2011) How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136(1):20–28PubMedCrossRefGoogle Scholar
  82. 82.
    Lanucara F et al (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6(4):281–294PubMedCrossRefGoogle Scholar
  83. 83.
    Huang RY, Chen G (2014) Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem 406(26):6541–6558PubMedCrossRefGoogle Scholar
  84. 84.
    Jaswal SS (1834) Biological insights from hydrogen exchange mass spectrometry. Biochim Biophys Acta 6:1188–1201Google Scholar
  85. 85.
    Jorgensen TJ et al (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J Am Chem Soc 127(8):2785–2793PubMedCrossRefGoogle Scholar
  86. 86.
    Jorgensen TJ et al (2005) Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides. Mol Cell Proteomics 4(12):1910–1919PubMedCrossRefGoogle Scholar
  87. 87.
    Zehl M et al (2008) Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J Am Chem Soc 130(51):17453–17459PubMedCrossRefGoogle Scholar
  88. 88.
    Rand KD et al (2008) Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J Am Chem Soc 130(4):1341–1349PubMedCrossRefGoogle Scholar
  89. 89.
    Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173(3):530–540PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Stengel F, Aebersold R, Robinson CV (2012) Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics 11(3):R111.014027<>PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Bruce JE (2012) In vivo protein complex topologies: sights through a cross-linking lens. Proteomics 12(10):1565–1575PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Paramelle D et al (2013) Chemical cross-linkers for protein structure studies by mass spectrometry. Proteomics 13(3–4):438–456PubMedCrossRefGoogle Scholar
  93. 93.
    Leitner A et al (2014) Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc Natl Acad Sci U S A 111(26):9455–9460PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Fischer L, Chen ZA, Rappsilber J (2013) Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J Proteomics 88:120–128PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Hankins JL et al (2013) Ceramide 1-phosphate mediates endothelial cell invasion via the annexin a2-p11 heterotetrameric protein complex. J Biol Chem 288(27):19726–19738PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Alvarez SE et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301):1084–1088PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Heinrich M et al (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18(19):5252–5263PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Huwiler A et al (1996) Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A 93(14):6959–6963PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Zhang Y et al (1997) Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89(1):63–72PubMedCrossRefGoogle Scholar
  100. 100.
    Galadari S et al (1998) Purification and characterization of ceramide-activated protein phosphatases. Biochemistry 37(32):11232–11238PubMedCrossRefGoogle Scholar
  101. 101.
    Lozano J et al (1994) Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem 269(30):19200–19202PubMedGoogle Scholar
  102. 102.
    Bourbon NA, Yun J, Kester M (2000) Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem 275(45):35617–35623PubMedCrossRefGoogle Scholar
  103. 103.
    Woodcock JM et al (2010) Sphingosine and FTY720 directly bind pro-survival 14-3-3 proteins to regulate their function. Cell Signal 22(9):1291–1299PubMedCrossRefGoogle Scholar
  104. 104.
    Borch J, Roepstorff P, Moller-Jensen J (2011) Nanodisc-based co-immunoprecipitation for mass spectrometric identification of membrane-interacting proteins. Mol Cell Proteomics 10(7):O110.006775PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Kota V, Szulc ZM, Hama H (2012) Identification of C(6)-ceramide-interacting proteins in D6P2T Schwannoma cells. Proteomics 12(13):2179–2184PubMedCrossRefGoogle Scholar
  106. 106.
    Habrukowich C et al (2010) Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. J Biol Chem 285(35):26825–26831PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Stiban J, Tidhar R, Futerman AH (2010) Ceramide synthases: roles in cell physiology and signaling. Adv Exp Med Biol 688:60–71PubMedCrossRefGoogle Scholar
  108. 108.
    Vunnam RR, Radin NS (1979) Short chain ceramides as substrates for glucocerebroside synthetase. Differences between liver and brain enzymes. Biochim Biophys Acta 573(1):73–82PubMedCrossRefGoogle Scholar
  109. 109.
    Wijesinghe DS et al (2005) Substrate specificity of human ceramide kinase. J Lipid Res 46(12):2706–2716PubMedCrossRefGoogle Scholar
  110. 110.
    Van Overloop H, Gijsbers S, Van Veldhoven PP (2006) Further characterization of mammalian ceramide kinase: substrate delivery and (stereo)specificity, tissue distribution, and subcellular localization studies. J Lipid Res 47(2):268–283PubMedCrossRefGoogle Scholar
  111. 111.
    Senkal CE et al (2011) Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J Biol Chem 286(49):42446–42458PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Delon C et al (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 279(43):44763–44774PubMedCrossRefGoogle Scholar
  113. 113.
    Lee SJ et al (2014) Probing conformational change of intrinsically disordered alpha-synuclein to helical structures by distinctive regional interactions with lipid membranes. Anal Chem 86(3):1909–1916PubMedCrossRefGoogle Scholar
  114. 114.
    Marcoux J et al (2013) Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci U S A 110(24):9704–9709PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Eckford PD, Sharom FJ (2005) The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem J 389(Pt 2):517–526PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Ciociola AA, Cohen LB, Kulkarni P (2014) How drugs are developed and approved by the FDA: current process and future directions. Am J Gastroenterol 109(5):620–623PubMedCrossRefGoogle Scholar
  117. 117.
    Allende ML et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279(50):52487–52492PubMedCrossRefGoogle Scholar
  118. 118.
    Bandhuvula P et al (2005) The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J Biol Chem 280(40):33697–33700PubMedCrossRefGoogle Scholar
  119. 119.
    Tonelli F et al (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22(10):1536–1542PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Lahiri S et al (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem 284(24):16090–16098PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Payne SG et al (2007) The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109(3):1077–1085PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Paugh SW et al (2006) Sphingosine and its analog, the immunosuppressant 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol, interact with the CB1 cannabinoid receptor. Mol Pharmacol 70(1):41–50PubMedGoogle Scholar
  123. 123.
    Cingolani F et al (2014) Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. J Lipid Res 55(8):1711–1720PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Wang K et al (2012) Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics 9(3):293–310PubMedCrossRefGoogle Scholar
  125. 125.
    Liu Y, Guo M (2014) Chemical proteomic strategies for the discovery and development of anticancer drugs. Proteomics 14(4–5):399–411PubMedCrossRefGoogle Scholar
  126. 126.
    Lukman S, Verma CS, Fuentes G (2014) Exploiting protein intrinsic flexibility in drug design. Adv Exp Med Biol 805:245–269PubMedCrossRefGoogle Scholar
  127. 127.
    Huber W, Mueller F (2006) Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Des 12(31):3999–4021PubMedCrossRefGoogle Scholar
  128. 128.
    Strickland EC et al (2013) Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc 8(1):148–161PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Tran DT, Adhikari J, Fitzgerald MC (2014) SILAC-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol Cell Proteomics 13(7):1800–1813PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    West GM et al (2010) Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc Natl Acad Sci U S A 107(20):9078–9082PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Pennsylvania State University College of MedicineHersheyUSA
  2. 2.Department of PharmacologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations