Skip to main content

Detection and Distribution of Sphingolipids in Tissue by FTICR MALDI-Imaging Mass Spectrometry

  • Chapter
Book cover Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

MALDI imaging mass spectrometry is an evolving technology capable of simultaneously profiling multiple analytes of interest across a tissue section and aligning their distribution to tissue histopathology. This chapter summarizes a MALDI imaging workflow for on-tissue identification of sphingolipids and glycosphingolipids using tissues derived from mouse models known to accumulate ceramides (Farber disease) and globotriaosylceramides (Fabry disease). A combination of CID and on-tissue enzyme digestions was utilized for structural confirmation prior to being added to the comprehensive sphingolipid and glycosphingolipid library. Two example case studies related to the modulation of sphingolipid metabolism are provided to illustrate the potential applications of MALDI imaging. In the first case study, distinct ceramides were visualized in relation to Lewis lung carcinoma tumors. In the second case study, tissues were derived from a tumor xenograft model treated with a drug targeting the sphingosine-1-phosphate/ceramide nexus. Representative images of ceramide and hexose ceramides in relation to cancer alone or drug distribution correlating to an increase or decrease in sphingosine-1-phosphate or ceramide species are provided. These MALDI imaging workflows can be readily adapted to assess the distribution of sphingolipids and glycosphingolipids in any tissue system of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsen PJ, Tennagels N (2014) On ceramides, other sphingolipids and impaired glucose homeostasis. Mol Metab 28:252–260

    Article  CAS  Google Scholar 

  2. Hannon YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  CAS  Google Scholar 

  3. Morad SA, Cabot MC (2013) Ceramide-orchestrated signaling in cancer cells. Nat Rev Cancer 13:51–65

    Article  CAS  PubMed  Google Scholar 

  4. Beckham TH, Lu P, Jones EE et al (2013) LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther 344:167–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Saddoughi SA, Ogretman B (2013) Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res 117:37–58

    Article  CAS  PubMed  Google Scholar 

  6. Ponnusamy S, Meyers-Needham M, Senkal CE et al (2012) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. EMBO Mol Med 8:761–765

    Article  CAS  Google Scholar 

  7. Slotte JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52:424–437

    Article  CAS  PubMed  Google Scholar 

  8. Vouk K, Hevir N, Ribic-Pucelj M et al (2012) Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Hum Reprod 27:2955–2965

    Article  CAS  PubMed  Google Scholar 

  9. Zhu J, Wang Y, Yu Y et al (2013) Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver Int 34:147–160

    Article  PubMed  CAS  Google Scholar 

  10. Liu Y, Chen Y, Momin A et al (2010) Elevation of sulfatides in ovarian cancer: an integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry. Mol Cancer 9:186

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Schwamborn K, Caprioli RM (2010) MALDI Imaging mass spectrometry—painting molecular pictures. Nat Rev Cancer 10:639–646

    Article  CAS  PubMed  Google Scholar 

  12. Irie M, Fujimura Y, Yamato M et al (2014) Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomics dynamics in a rat stroke model. Metabolomics 10:473–483

    Article  CAS  PubMed  Google Scholar 

  13. Jones EE, Dworski S, Canals D et al (2014) On tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 19:8303–8311

    Article  CAS  Google Scholar 

  14. Stoeckli M, Chaurand P, Hallahan DE et al (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 4:493–496

    Article  Google Scholar 

  15. Gessel MM, Norris JL, Caprioli RM (2014) MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteomics 107:71–82

    Article  CAS  PubMed  Google Scholar 

  16. Berry KA, Hankin JA, Barkley RM et al (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111:6491–6512

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Angel PM, Spraggins JM, Baldwin HS et al (2012) Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal Chem 84:1557–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sun N, Ly A, Meding S et al (2014) High-resolution metabolite imaging of light and dark treated retina using MALDI-FTICR mass spectrometry. Proteomics 7–8:913–923

    Article  CAS  Google Scholar 

  19. Wang X, Han J, Pan J et al (2014) Comprehensive imaging of porcine adrenal gland lipids by MALDI-FTMS using quercetin as a matrix. Anal Chem 86:638–646

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Liu Y, Sullards MC et al (2010) An introduction to sphingolipid metabolism and analysis by new technologies. Neuromolecular Med 12:306–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Powers TW, Jones EE, Betesh LR et al (2013) A MALDI imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal Chem 20:9799–9806

    Article  CAS  Google Scholar 

  22. Chaurand P, Cornett DS, Angel PM, Caprioli RM (2011) From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics 10:O110.004259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Castellino S, Groseclose MR, Sigafoos J et al (2012) Central Nervous system disposition and metabolism of Fosdevirine (GSK2248761), a non-nucleoside reverse transcriptase inhibitor: an LC-MS Matrix-assisted laser desorption/ionization imaging MS investigation into central nervous system toxicity. Chem Res Toxicol 2:241–251

    Google Scholar 

  24. Chughtai K, Jiang L, Greenwood TR et al (2013) Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models. J Lipid Res 54:333–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chaurand P, Cornett DS, Angel PM et al (2011) From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics 2:o110.004259

    Article  CAS  Google Scholar 

  26. Chen Y, Liu Y, Allegood J et al (2010) Imaging MALDI mass spectrometry of sphingolipids using an oscillating capillary nebulizer matrix application system. Methods Mol Biol 656:131–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chen Y, Allegood J, Liu Y et al (2008) Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 80(8):2780–2788

    Article  CAS  PubMed  Google Scholar 

  28. Le CH, Han J, Borchers CH et al (2012) Dithranol as a MALDI matrix for tissue imaging of lipids by Fourier transform ion cyclotron resonance mass spectrometry. PLoS One 7(11), e49519

    Article  CAS  Google Scholar 

  29. Fulop A, Porada MB, Marsching C et al (2013) 4-Phenyl-α-cyanocinnamic acid amide: screening for a negative ion matrix for MALDI-MS imaging of multiple lipid classes. Anal Chem 85:9156–9163

    Article  PubMed  CAS  Google Scholar 

  30. Cerruti CD, Touboul D, Guerineau V et al (2011) MALDI imaging mass spectrometry of lipids by adding lithium salts to the matrix solution. Anal Bioanal Chem 401:75–87

    Article  CAS  PubMed  Google Scholar 

  31. Goto-Inoue N, Hayasaka T et al (2010) The detection of glycosphingolipids in brain tissue sections by imaging mass spectrometry using gold nanoparticles. J Am Soc Mass Spectrom 11:1940–1943

    Google Scholar 

  32. Goto-Inoue N, Hayasaka T, Zaima N et al (2012) Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-chanarin syndrome due to ceramide metabolic abnormality in the skin. PLoS One 7(11), e49519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Colsch B, Woods AS (2010) Localization and imaging of sialylated glycosphingolipds in brain tissue sections by MALDI mass spectrometry. Glycobiology 6:661–667

    Article  CAS  Google Scholar 

  34. Alayoubi AM, Wang JC, Au BC et al (2013) Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol Med 5:827–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pacienza N, Yoshitmitsu M, Mizue N et al (2012) Lentivector transduction improves outcomes over transplantation of human HSCs alone in NOD/SCID/Fabry mice. Mol Ther 7:1454–1461

    Article  CAS  Google Scholar 

  36. Baykut G, Fuchser J, Witt M et al (2002) A combined ion source for fast switching between electrospray and matrix-assisted laser desorption/ionization in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 16:1631–1641

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor PB, Costello CE (2001) A high pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry ion source for thermal stabilization of labile biomolecules. Rapid Commun Mass Spectrom 15:1862–1868

    Article  PubMed  Google Scholar 

  38. O’Connor PB, Mirgorordskaya E, Costello CE (2002) High pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for minimization of ganglioside fragmentation. J Am Soc Mass Spectrom 13:402–407

    Article  PubMed  Google Scholar 

  39. Pettus BJ, Bielawska A, Kroesen BJ et al (2003) Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 17:1203–1211

    Article  CAS  PubMed  Google Scholar 

  40. Canals D, Hannun YA (2013) Novel chemotherapeutic drugs in sphingolipid cancer research. Handb Exp Pharmacol 211–38

    Google Scholar 

  41. Nowling TK, Mather AR, Thirumagal T et al (2015) Renal glycosphingolipid metabolism is dysfunctional in lupus mice and patients with nephritis. J Am Soc Nephrol 26:1402

    Article  CAS  PubMed  Google Scholar 

  42. Whitehead SN, Chan KH, Gangaraju S et al (2011) Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One 6, e20808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Grove KJ, Voziyan PA, Spraggins JM et al (2014) Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res 55:1375–1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Woods AS, Colsch B, Jackson SN et al (2013) Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci 4:594–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Richards AL, Lietz CB, Wager-Miller J et al (2012) Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet. J Lipid Res 53:1390–1398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Honke K, Zhang Y, Cheng X et al (2004) Biological roles of sulfoglycolipids and pathophysiology of their deficiency. Glycoconj J 21:59–62

    Article  CAS  PubMed  Google Scholar 

  47. Yuki D, Sugiura Y, Zaima N et al (2011) Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience 193:44–53

    Article  CAS  PubMed  Google Scholar 

  48. Marsching C, Eckhardt M, Grone H et al (2011) Imaging of complex sulfatides SM3 and SB1a in mouse kidney using MALDI-TOF/TOF mass spectrometry. Anal Bioanal Chem 401:53–64

    Article  CAS  PubMed  Google Scholar 

  49. Manwaring V, Boutin M, Auray-Blais C (2013) A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal Chem 19:9039–9048

    Article  CAS  Google Scholar 

  50. Yamaura T, Doki Y, Murakami K, Saiki I (1999) Model for mediastinal lymph node metastasis produced by orthotopic intrapulmonary implantation of lung cancer cells in mice. Hum Cell 12:197–204

    CAS  PubMed  Google Scholar 

  51. Giussani P, Tringali C, Riboni L et al (2014) Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 3:4356–4392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Drake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, E.E. et al. (2015). Detection and Distribution of Sphingolipids in Tissue by FTICR MALDI-Imaging Mass Spectrometry. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_15

Download citation

Publish with us

Policies and ethics