Skip to main content

The Role and Function of Sphingolipids in Glioblastoma Multiforme

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Aberrations in sphingolipid metabolism and thus levels have been implicated in promoting the aggressiveness of glioblastoma multiforme, one of the most lethal cancers in humans. A major player is sphingosine-1-phosphate, that pressures GBM cells to exhibit its hallmarks, leading to increased proliferation, invasiveness, stemness, angiogenesis and death resistance, this indicating a fine balance and interplay between S1P function and this malignancy. To the opposite GBM are organized to maintain low their ceramide and sphingomyelin levels, which in turn lead to a loss of growth control and to a gain of death resistance. While the mechanisms of these alterations are emerging, the sphingolipid signaling pathway has been implicated in controlling GBM action and mass, and in mediating the link of malignancy. Here we describe and discuss the current understanding on how GBM cells arm themselves with the abilities of manipulating sphingolipids, especially sphingosine-1-phosphate and ceramide, and how these alterations, through differential interactions, regulate different signaling pathways, and integrate GBM function and mass, thus providing molecular cues for GBM properties and progression. It is a future challenge unrevealing how the multiforme features of sphingolipid signaling could be effectively manipulated as strategies to optimize the efficacy and selectivity of future therapies for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2OHOA:

2-Hydroxyoleic acid

A-ceramidase:

Acid ceramidase

A-SMase:

Acid sphingomyelinase

Bcl2L13:

B-cell lymphoma 2-like 13

bFGF:

Basic fibroblast growth factor

CD95L:

CD95 ligand

CerS:

Ceramide synthase

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

ER:

Endoplasmic reticulum

GlcCer:

Glucosylceramide

GSCs:

Glioblastoma stem-like cells

HIF:

Hypoxia inducible factor

IL:

Interleukin

N-SMase:

Neutral sphingomyelinase

PAI-1:

Plasminogen activator inhibitor-1

PAS:

Plasminogen activator system

PERK:

Protein kinase R-like endoplasmic reticulum kinase

PKCδ:

Protein kinase C delta

PLD:

Phospholipase D

PRKD2:

Protein kinase D2

PTEN:

Phosphatase and tensin homolog located on chromosome TEN

S1P:

Sphingosine-1-phosphate

S1P1–5 :

Sphingosine-1-phosphate receptors 1–5

SPP2:

Sphingosine-1-phosphate phosphatase 2

THC:

Tetrahydrocannabinol

TMZ:

Temozolomide

TNFα:

Tumor necrosis factor α

VEGF:

Vascular endothelial growth factor

References

  1. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212e36

    Article  Google Scholar 

  2. Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364

    Article  CAS  PubMed  Google Scholar 

  3. Serwer LP, James CD (2012) Challenges in drug delivery to tumors of the central nervous system: an overview of pharmacological and surgical considerations. Adv Drug Deliv Rev 64:590–597

    Article  CAS  PubMed  Google Scholar 

  4. Krex D, Klink B, Hartmann C et al (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606

    Article  PubMed  Google Scholar 

  5. Henriksson R, Asklund T, Poulsen HS (2011) Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review. J Neurooncol 104:639–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  CAS  PubMed  Google Scholar 

  7. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  8. Brennan C, Momota H, Hambardzumyan D et al (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4, e7752

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    Article  CAS  PubMed  Google Scholar 

  10. Siebzehnrubl FA, Reynolds BA, Vescovi A et al (2011) The origins of glioma: e pluribus unum? Glia 59:1135–1147

    Article  CAS  PubMed  Google Scholar 

  11. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A 97:6242–6244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Maher EA, Furnari FB, Bachoo RM et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  CAS  PubMed  Google Scholar 

  13. Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia 59:1169–1180

    Article  PubMed  Google Scholar 

  14. Mao H, LeBrun DG, Yang J et al (2012) Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest 30:48–56

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling. Lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  16. Cuvillier O, Pirianov G, Kleuser B et al (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  CAS  PubMed  Google Scholar 

  17. Riboni L, Campanella R, Bassi R et al (2002) Ceramide levels are inversely associated with malignant progression of human glial tumors. Glia 39:105–113

    Article  PubMed  Google Scholar 

  18. Abuhusain HJ, Matin A, Qiao Q et al (2013) A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 288:37355–37364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Merrill AH Jr, Stokes TH, Momin A et al (2009) Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 50:S97–S102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Park JW, Park WJ, Futerman AH (2013) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta 1841:671–681

    Article  PubMed  CAS  Google Scholar 

  22. Sullards MC, Wang E, Peng Q, Merrill AH Jr (2003) Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry. Cell Mol Biol (Noisy-le-Grand) 49:789–797

    CAS  Google Scholar 

  23. Karahatay S, Thomas K, Koybasi S et al (2007) Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett 256:101–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Campanella R (1992) Membrane lipid modifications in human gliomas of different degree of malignancy. J Neurosurg Sci 36:11–25

    CAS  PubMed  Google Scholar 

  25. Barceló-Coblijn G, Martin ML, de Almeida RF et al (2011) Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc Natl Acad Sci U S A 108:19569–19574

    Article  PubMed Central  PubMed  Google Scholar 

  26. Terés S, Lladó V, Higuera M et al (2012) 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proc Natl Acad Sci U S A 109:8489–8494

    Article  PubMed Central  PubMed  Google Scholar 

  27. Jensen SA, Calvert AE, Volpert G et al (2014) Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc Natl Acad Sci U S A 111:5682–5687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Van Brocklyn JR, Jackson CA, Pearl DK et al (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64:695–705

    Article  PubMed  Google Scholar 

  29. Li J, Guan HY, Gong LY et al (2008) Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clin Cancer Res 14:6996–7003

    Article  CAS  PubMed  Google Scholar 

  30. Quint K, Stiel N, Neureiter D et al (2014) The role of sphingosine kinase isoforms and receptors S1P1, S1P2, S1P3, and S1P5 in primary, secondary, and recurrent glioblastomas. Tumour Biol 35(9):8979–8989. doi:10.1007/s132770142172

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa C, Kihara A, Gokoh M, Igarashi Y (2003) Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem 278:1268–1272

    Article  CAS  PubMed  Google Scholar 

  32. Le Stunff H, Giussani P, Maceyka M et al (2007) Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 282:34372–34380

    Article  PubMed  Google Scholar 

  33. Steck PA, Ligon AH, Cheong P et al (1995) Two tumor suppressive loci on chromosome 10 involved in human glioblastomas. Genes Chromosomes Cancer 12:255–261

    Article  CAS  PubMed  Google Scholar 

  34. Mora R, Dokic I, Kees T et al (2010) Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma. Glia 58:1364–1383

    PubMed  Google Scholar 

  35. Rosen H, Goetzl EJ (2005) Sphingosine-1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida Y, Nakada M, Sugimoto N et al (2010) Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int J Cancer 126:2341–2352

    CAS  PubMed  Google Scholar 

  37. Yoshida Y, Nakada M, Harada T et al (2010) The expression level of sphingosine-1-phosphate receptor type 1 is related to MIB-1 labeling index and predicts survival of glioblastoma patients. J Neurooncol 98:41–47

    Article  CAS  PubMed  Google Scholar 

  38. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  39. Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  CAS  PubMed  Google Scholar 

  40. Ohgaki H, Kleihues P (2009) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  Google Scholar 

  41. Persano L, Rampazzo E, Basso G, Viola G (2013) Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol 85:612–622

    Article  CAS  PubMed  Google Scholar 

  42. Al-Hajj M, Becker MW, Wicha M et al (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47

    Article  CAS  PubMed  Google Scholar 

  43. Oliver TG, Wechsler-Reya RJ (2004) Getting at the root and stem of brain tumors. Neuron 42:885–888

    Article  CAS  PubMed  Google Scholar 

  44. Holthuis JC, Pomorski T, Raggers RJ et al (2001) The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 81:1689–1723

    CAS  PubMed  Google Scholar 

  45. Lebman DA, Spiegel S (2008) Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling. J Lipid Res 49:1388–1394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bassi R, Anelli V, Giussani P (2006) Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. Glia 53:621–630

    Article  PubMed  Google Scholar 

  47. Van Brocklyn JR, Letterle CA, Snyder PJ, Prior TW (2002) Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase β. Cancer Lett 181:195–204

    Article  PubMed  Google Scholar 

  48. Swartling FJ, Hede S-M, Weiss WA (2013) What underlies the diversity of brain tumors? Cancer Metastasis Rev 32:5–24

    Article  PubMed Central  PubMed  Google Scholar 

  49. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  CAS  PubMed  Google Scholar 

  50. Sukocheva O, Wadham C, Holmes A et al (2006) Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 173:301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Riboni L, Viani P, Bassi R et al (2000) Biomodulatory role of ceramide in basic fibroblast growth-factor induced proliferation of cerebellar astrocytes in primary culture. Glia 32:137–145

    Article  CAS  PubMed  Google Scholar 

  52. LaMontagne K, Littlewood-Evans A, Schnell C et al (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66:221–231

    Article  CAS  PubMed  Google Scholar 

  53. Van Brocklyn JR, Young N, Roof R (2003) Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett 199:53–60

    Article  PubMed  CAS  Google Scholar 

  54. Lee H, Deng J, Kujawski M et al (2010) STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 16:1421–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Young N, Van Brocklyn JR (2007) Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Exp Cell Res 313:1615–1627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Radeff-Huang J, Seasholtz TM, Chang JW et al (2007) Tumor necrosis factor-α-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression. J Biol Chem 282:863–870

    Article  CAS  PubMed  Google Scholar 

  57. Giussani P, Brioschi L, Bassi R et al (2009) Phosphatidylinositol 3-kinase/AKT pathway regulates the endoplasmic reticulum to Golgi traffic of ceramide in glioma cells: a link between lipid signaling pathways involved in the control of cell survival. J Biol Chem 284:5088–5096

    Article  CAS  PubMed  Google Scholar 

  58. Viani P, Giussani P, Brioschi L et al (2003) Ceramide in nitric oxide inhibition of glioma cell growth. Evidence for the involvement of ceramide traffic. J Biol Chem 278:9592–9601

    Article  CAS  PubMed  Google Scholar 

  59. Kapitonov D, Allegood JC, Mitchell C et al (2009) Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69:6915–6923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lu T, Tian L, Han Y et al (2007) Dose-dependent cross-talk between the transforming growth factor-β and interleukin-1 signaling pathways. Proc Natl Acad Sci U S A 104:4365–4370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Paugh BS, Bryan L, Paugh SW et al (2009) Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. J Biol Chem 284:3408–3417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhang H, Li W, Sun S et al (2012) Inhibition of sphingosine kinase 1 suppresses proliferation of glioma cells under hypoxia by attenuating activity of extracellular signal-regulated kinase. Cell Prolif 45:167–175

    Article  CAS  PubMed  Google Scholar 

  63. Pyne NJ, Tonelli F, Lim KG et al (2012) Sphingosine 1-phosphate signalling in cancer. Biochem Soc Trans 40:94–100

    Article  CAS  PubMed  Google Scholar 

  64. Glas M, Rath BH, Simon M et al (2010) Residual tumor cells are unique cellular targets in glioblastoma. Ann Neurol 68:264–269

    PubMed Central  PubMed  Google Scholar 

  65. Winkler F, Kienast Y, Fuhrmann M et al (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57:1306–1315

    Article  PubMed  Google Scholar 

  66. Kalokhe G, Grimm SA, Chandler JP et al (2012) Metastatic glioblastoma: case presentations and a review of the literature. J Neurooncol 107:21–27

    Article  PubMed  Google Scholar 

  67. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  CAS  PubMed  Google Scholar 

  68. Czekay RP, Aertgeerts K, Curriden SA, Loskutoff DJ (2003) Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 160:781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Malchinkhuu E, Sato K, Maehama T et al (2008) S1P2 receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. Biochem Biophys Res Commun 366:963–968

    Article  CAS  PubMed  Google Scholar 

  70. Malchinkhuu E, Sato K, Horiuchi Y et al (2005) Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. Oncogene 24:6676–6688

    Article  CAS  PubMed  Google Scholar 

  71. Van Brocklyn JR (2007) Sphingolipid signaling pathways as potential therapeutic targets in gliomas. Mini Rev Med Chem 7:984–990

    Article  PubMed  Google Scholar 

  72. Bryan L, Paugh BS, Kapitonov D et al (2008) Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness. Mol Cancer Res 6:1469–1477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Walsh CT, Radeff-Huang J, Matteo R et al (2008) Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteine-rich protein 61. FASEB J 22:4011–4021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Young N, Pearl DK, Van Brocklyn JR (2009) Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. Mol Cancer Res 7:23–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Azoitei N, Kleger A, Schoo N et al (2011) Protein kinase D2 is a novel regulator of glioblastoma growth and tumor formation. Neuro Oncol 13:710–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bernhart E, Damma S, Wintersperger A et al (2013) Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro. Exp Cell Res 319:2037–2048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Muracciole X, Romain S, Dufour H et al (2002) PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int J Radiat Oncol Biol Phys 52:592–598

    Article  CAS  PubMed  Google Scholar 

  78. Paugh BS, Paugh SW, Bryan L et al (2008) EGF regulates plasminogen activator inhibitor-1 by a pathway involving c-Src, PKCδ, and sphingosine kinase 1 in glioblastoma cells. FASEB J 22:455–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436

    Article  CAS  PubMed  Google Scholar 

  80. Cheng L, Wu Q, Guryanova OA et al (2011) Elevated invasive potential of glioblastoma stem cells. Biochem Biophys Res Commun 406:643–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Lathia JD, Gallagher J, Myers JT et al (2011) Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One 6, e24807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375

    Article  CAS  PubMed  Google Scholar 

  83. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514

    Article  PubMed  Google Scholar 

  84. Filatova A, Acker T, Garvalov BK (2013) The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta 1830:2496–2508

    Article  CAS  PubMed  Google Scholar 

  85. Riccitelli E, Giussani P, Di Vito C et al (2013) Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival. PLoS One 8, e68229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Marfia G, Campanella R, Navone SE et al (2014) Autocrine/paracrine sphingosine-1-phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. Glia. doi:10.1002/glia.22718

    PubMed  Google Scholar 

  87. Anelli V, Bassi R, Tettamanti G et al (2005) Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. J Neurochem 92:1204–1215

    Article  CAS  PubMed  Google Scholar 

  88. Anelli V, Gault CR, Snider AJ, Obeid LM (2010) Role of sphingosine kinase-1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB J 24:2727–2738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kimura A, Ohmori T, Ohkawa R et al (2007) Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 25:115–124

    Article  CAS  PubMed  Google Scholar 

  90. Seidel S, Garvalov BK, Wirta V et al (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995

    Article  PubMed  Google Scholar 

  91. Annabi B, Lachambre MP, Plouffe K et al (2009) Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 48:910–919

    Article  CAS  PubMed  Google Scholar 

  92. Li G, Chen Z, Hu YD et al (2009) Autocrine factors sustain glioblastoma stem cell self-renewal. Oncol Rep 21:419–424

    PubMed  Google Scholar 

  93. Soeda A, Inagaki A, Oka N et al (2008) Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 283:10958–10966

    Article  CAS  PubMed  Google Scholar 

  94. Stockhausen MT, Kristoffersen K, Stobbe L, Poulsen HS (2014) Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential. Cancer Biol Ther 15:216–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Estrada-Bernal A, Lawler SE, Nowicki MO et al (2011) The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. J Neurooncol 102:353–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Gräler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18:551–553

    PubMed  Google Scholar 

  97. Estrada-Bernal A, Palanichamy K, Ray Chaudhury A, Van Brocklyn JR (2012) Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro Oncol 14:405–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Linkous AG, Yazlovitskaya EM (2011) Angiogenesis in glioblastoma multiforme: navigating the maze. Anticancer Agents Med Chem 11:712–718

    Article  CAS  PubMed  Google Scholar 

  99. Bulnes S, Bengoetxea H, Ortuzar N et al (2012) Angiogenic signalling pathways altered in gliomas: selection mechanisms for more aggressive neoplastic subpopulations with invasive phenotype. J Signal Trans 2012, e597915

    Google Scholar 

  100. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2:1117–1133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Onishi M, Ichikawa T, Kurozumi K, Date I (2011) Angiogenesis and invasion in glioma. Brain Tumor Pathol 28:13–24

    Article  CAS  PubMed  Google Scholar 

  102. Ader I, Brizuela L, Bouquerel P et al (2008) Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1α during hypoxia in human cancer cells. Cancer Res 68:8635–8642

    Article  CAS  PubMed  Google Scholar 

  103. Anelli V, Gault CR, Cheng AB, Obeid LM (2008) Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem 283:3365–3375

    Article  CAS  PubMed  Google Scholar 

  104. Liu Y, Wada R, Yamashita T et al (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106:951–961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22:7758–7768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Hannun YA (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89:1845–1853

    CAS  PubMed  Google Scholar 

  107. Morad SAF, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13:51–65

    Article  CAS  PubMed  Google Scholar 

  108. Giussani P, Tringali C, Riboni L et al (2014) Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 15:4356–4392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Yount GL, Levine KS, Kuriyama H et al (1999) Fas (APO-1/CD95) signaling pathway is intact in radioresistant human glioma cells. Cancer Res 59:1362–1365

    CAS  PubMed  Google Scholar 

  110. Wagenknecht B, Roth W, Gulbins E et al (2001) C2-ceramide signaling in glioma cells: synergistic enhancement of CD95-mediated, caspase-dependent apoptosis. Cell Death Differ 8:595–602

    Article  CAS  PubMed  Google Scholar 

  111. Sawada M, Nakashima S, Kiyono T et al (2002) Acid sphingomyelinase activation requires caspase-8 but not P53 nor reactive oxygen species during Fas-induced apoptosis in human glioma cells. Exp Cell Res 273:157–168

    Article  CAS  PubMed  Google Scholar 

  112. Yoon G, Kim KO, Lee J et al (2002) Ceramide increases Fas-mediated apoptosis in glioblastoma cells through FLIP down-regulation. J Neurooncol 60:135–141

    Article  PubMed  Google Scholar 

  113. Sawada M, Nakashima S, Banno Y et al (2000) Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ 7:761–772

    Article  CAS  PubMed  Google Scholar 

  114. Sawada M, Kiyono T, Nakashima S et al (2004) Molecular mechanisms of TNF-alpha-induced ceramide formation in human glioma cells: P53-mediated oxidant stress-dependent and -independent pathways. Cell Death Differ 11:997–1008

    Article  CAS  PubMed  Google Scholar 

  115. England B, Huang T, Karsy M (2013) Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol 34:2063–2074

    Article  CAS  PubMed  Google Scholar 

  116. Hara S, Nakashima S, Kiyono T et al (2004) P53-independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis. Cell Death Differ 11:853–861

    Article  CAS  PubMed  Google Scholar 

  117. Hara S, Nakashima S, Kiyono T et al (2004) Ceramide triggers caspase activation during gamma-radiation-induced apoptosis of human glioma cells lacking functional p53. Oncol Rep 12:119–123

    CAS  PubMed  Google Scholar 

  118. Banerjee HN, Blackshear M, Williams J et al (2012) C6 Ceramide induces p53 dependent apoptosis in human astrocytoma grade 4 (glioblastoma multiforme) cells. J Cancer Sci Ther 4:12–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Gramatzki D, Herrmann C, Happold C et al (2013) Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway. PLoS One 8, e63527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Grammatikos G, Teichgraber V, Carpinteiro A et al (2007) Overexpression of acid sphingomyelinase sensitizes glioma cells to chemotherapy. Antioxid Redox Signal 9:1449–1956

    Article  CAS  PubMed  Google Scholar 

  121. Heinrich M, Neumeyer J, Jakob M et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563

    Article  CAS  PubMed  Google Scholar 

  122. Dumitru CA, Sandalcioglu IE, Wagner M et al (2009) Lysosomal ceramide mediates gemcitabine-induced death of glioma cells. J Mol Med 87:1123–1132

    Article  CAS  PubMed  Google Scholar 

  123. Fukuda ME, Iwadate Y, Machida T et al (2005) Cathepsin D is a potential serum marker for poor prognosis in glioma patients. Cancer Res 65:5190–5194

    Article  CAS  PubMed  Google Scholar 

  124. Noda S, Yoshimura S, Sawada M et al (2001) Role of ceramide during cisplatin-induced apoptosis in C6 glioma cells. J Neurooncol 52:11–21

    Article  CAS  PubMed  Google Scholar 

  125. Gomez del Pulgar T, Velasco G, Sanchez C et al (2002) De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J 363:183–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Mochizuki T, Asai A, Saito N et al (2002) Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. J Biol Chem 277:2790–2797

    Article  CAS  PubMed  Google Scholar 

  127. Kim WH, Choi CH, Kang SK et al (2005) Ceramide induces non-apoptotic cell death in human glioma cells. Neurochem Res 30:969–979

    Article  CAS  PubMed  Google Scholar 

  128. Choi AMK, Ryter SV, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  129. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Pirtoli L, Cevenini G, Tini P et al (2009) The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 5:930–936

    Article  PubMed  Google Scholar 

  131. Huang X, Bai HM, Chen L et al (2010) Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci 17:1515–1519

    Article  CAS  PubMed  Google Scholar 

  132. Daido S, Kanzawa T, Yamamoto A et al (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293

    Article  CAS  PubMed  Google Scholar 

  133. Kanzawa T, Kondo Y, Ito H et al (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108

    CAS  PubMed  Google Scholar 

  134. Kanzawa TL, Zhang LC, Xiao IM et al (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24:980–991

    Article  CAS  PubMed  Google Scholar 

  135. Park MA, Yacoub A, Sarkar D et al (2008) PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells. Autophagy 4:513–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Yacoub A, Hamed HA, Allegood J et al (2010) PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res 70:1120–1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Hamed HA, Yacoub A, Park MA et al (2013) Histone deacetylase inhibitors interact with melanoma differentiation associated-7/interleukin-24 to kill primary human glioblastoma cells. Mol Pharmacol 84:171–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Giussani P, Bassi R, Anelli V et al (2012) Glucosylceramide synthase protects glioblastoma cells against autophagic and apoptotic death induced by temozolomide and paclitaxel. Cancer Invest 30:27–37

    Article  CAS  PubMed  Google Scholar 

  139. Carracedo A, Lorente M, Egia A et al (2006) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312

    Article  CAS  PubMed  Google Scholar 

  140. Salazar M, Carracedo A, Salanueva IJ et al (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Salazar M, Carracedo A, Salanueva IJ et al (2009) TRB3 links ER stress to autophagy in cannabinoid anti-tumoral action. Autophagy 5:1048–1049

    Article  CAS  PubMed  Google Scholar 

  142. Torres S, Lorente M, Rodríguez-Fornés F et al (2011) A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther 10:90–103

    Article  CAS  PubMed  Google Scholar 

  143. Qin LS, Yu ZQ, Zhang SM et al (2013) The short chain cell-permeable ceramide (C6) restores cell apoptosis and perifosine sensitivity in cultured glioblastoma cells. Mol Biol Rep 40:5645–5655

    Article  CAS  PubMed  Google Scholar 

  144. Bruntz RC, Taylor HE, Lindsley CW, Brown HA (2014) Phospholipase D2 mediates survival signalling through direct regulation of Akt in glioblastoma cells. J Biol Chem 289:600–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Yoshimura S, Sakai H, Ohguchi K, Nakashima S et al (1997) Changes in the activity and mRNA levels of phospholipase D during ceramide-induced apoptosis in rat C6 glial cells. J Neurochem 69:713–720

    Article  CAS  PubMed  Google Scholar 

  146. Zinda MJ, Vlahos CJ, Lai MT (2001) Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87mg cells. Biochem Biophys Res Commun 280:1107–1115

    Article  CAS  PubMed  Google Scholar 

  147. Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Sonoda Y, Yamamoto D, Sakurai S et al (2001) FTY720, a novel immunosuppressive agent, induces apoptosis in human glioma cells. Biochem Biophys Res Commun 281:282–288

    Article  CAS  PubMed  Google Scholar 

  149. Bektas M, Johnson SP, Poe WE et al (2009) A sphingosine kinase inhibitor induces cell death in temozolomide resistant glioblastoma cells. Cancer Chemother Pharmacol 64:1053–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Guan H, Song L, Cai J et al (2011) Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim pathway and contributes to apoptosis resistance in glioma cells. PLoS One 6, e19946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Sato K, Ui M, Okajima F (2000) Differential roles of Edg-1 and Edg-5, sphingosine 1-phosphate receptors, in the signaling pathways in C6 glioma cells. Mol Brain Res 85:151–160

    Article  CAS  PubMed  Google Scholar 

  152. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  153. Preusser M, de Ribaupierre S, Wohrer A et al (2011) Current concepts and management of glioblastoma. Ann Neurol 70:9–21

    Article  PubMed  Google Scholar 

  154. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997e1003

    Article  Google Scholar 

  155. Hall E, Giaccia A (2006) Radiobiology for the radiologist, 6th edn. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  156. Chamberlain M (2011) Evolving strategies: future treatment of glioblastoma. Expert Rev Neurother 11:519–532

    Article  PubMed  Google Scholar 

  157. Rekers H, Sminia P, Peters GJ (2011) Towards tailored therapy of glioblastoma multiforme. J Chemother 23:187–199

    Article  CAS  PubMed  Google Scholar 

  158. Mégalizzi V, Mathieu V, Mijatovicz T et al (2007) 4-IBP, a Δ1 receptor agonist, decreases the migration of human cancer cells, including glioblastoma cells, in vitro and sensitizes them in vitro and in vivo to cytotoxic insults of proapoptotic and proautophagic drugs. Neoplasia 9:358–369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Dumitru CA, Weller M, Gulbins E (2009) Ceramide metabolism determines glioma cell resistance to chemotherapy. J Cell Physiol 221:688–695

    Article  CAS  PubMed  Google Scholar 

  160. Reynolds CP, Maurer BJ, Kolesnick RN (2004) Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett 206:169–180

    Article  CAS  PubMed  Google Scholar 

  161. Adan-Gokbulut A, Kartal-Yandim M, Iskender G, Baran Y (2013) Novel agents targeting bioactive sphingolipids for the treatment of cancer. Curr Med Chem 20:108–122

    Article  CAS  PubMed  Google Scholar 

  162. Truman JP, García-Barros M, Obeid LM, Hannun YA (2014) Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta 1841:1174–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. French KJ, Schrecengost RS, Lee BD et al (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63:5962–5969

    CAS  PubMed  Google Scholar 

  164. Rex K, Jeffries S, Brown ML et al (2013) Sphingosine kinase activity is not required for tumor cell viability. PLoS One 8, e68328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  CAS  PubMed  Google Scholar 

  166. Horga A, Montalban X (2008) FTY720 (fingolimod) for relapsing multiple sclerosis. Expert Rev Neurother 8:699–714

    Article  CAS  PubMed  Google Scholar 

  167. Huwiler A, Pfeilschifter J (2008) New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem Pharmacol 75:1893–1900

    Article  CAS  PubMed  Google Scholar 

  168. Adachi K, Chiba K (2008) FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect Medicin Chem 1:11–23

    Google Scholar 

  169. Romero Rosales K, Singh G, Wu K et al (2011) Sphingolipid-based drugs selectively kill cancer cells by down-regulating nutrient transporter proteins. Biochem J 439:299–311

    Article  CAS  PubMed  Google Scholar 

  170. Miron VE, Schubart A, Antel JP (2008) Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci 274:13–17

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Riboni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdel Hadi, L., Di Vito, C., Marfia, G., Navone, S.E., Campanella, R., Riboni, L. (2015). The Role and Function of Sphingolipids in Glioblastoma Multiforme. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_12

Download citation

Publish with us

Policies and ethics