Skip to main content

Sphingolipids in the Pathogenesis of Head and Neck and Lung Cancers: Translational Aspects for Therapy and Biomarker Development

  • Chapter
  • 833 Accesses

Abstract

Sphingolipids have garnered tremendous attention in the last two decades as a class of the bioactive lipids that regulate multiple biological events in addition to being important for membrane structures. With the identification of enzymes involved in metabolism of various bioactive molecules of the sphingolipid pathway, a better and broader understanding has been gained of how cells control signaling events, such as proliferation and apoptosis, through regulating levels of sphingolipids. This chapter will focus on recent findings relating to functions of sphingolipids in the pathogenesis of lung and head and neck cancers. Specifically, recent discoveries on the roles of sphingolipids in the regulation of head and neck squamous cell carcinoma and lung cancers will be discussed. Moreover, recent efforts on the identification of sphingolipid metabolism related biomarker development will be deliberated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  2. Gregoire V, Lefebvre JL, Licitra L, Felip E, E.-E.-E.G.W. Group (2010) Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(Suppl 5):v184–v186

    Article  PubMed  Google Scholar 

  3. Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM, Ward E, Wu XC, Eheman C, Anderson R, Ajani UA, Kohler B, Edwards BK (2008) Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst 100(23):1672–1694

    Article  PubMed Central  PubMed  Google Scholar 

  4. Syrjanen S, Lodi G, von Bultzingslowen I, Aliko A, Arduino P, Campisi G, Challacombe S, Ficarra G, Flaitz C, Zhou HM, Maeda H, Miller C, Jontell M (2011) Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis 17(Suppl 1):58–72

    Article  PubMed  Google Scholar 

  5. Denaro N, Russi EG, Adamo V, Merlano MC (2014) State-of-the-art and emerging treatment options in the management of head and neck cancer: news from 2013. Oncology 86(4):212–229

    CAS  PubMed  Google Scholar 

  6. Haddad RI, Shin DM (2008) Recent advances in head and neck cancer. N Engl J Med 359(11):1143–1154

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization Cancer (2013) Available from http://www.who.int/mediacentre/factsheets/fs297/en/

  8. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29

    Article  PubMed  Google Scholar 

  9. Ettinger DS, Akerley W, Borghaei H, Chang AC, Cheney RT, Chirieac LR, D’Amico TA, Demmy TL, Govindan R, Grannis FW Jr, Grant SC, Horn L, Jahan TM, Komaki R, Kong FM, Kris MG, Krug LM, Lackner RP, Lennes IT, Loo BW Jr, Martins R, Otterson GA, Patel JD, Pinder-Schenck MC, Pisters KM, Reckamp K, Riely GJ, Rohren E, Shapiro TA, Swanson SJ, Tauer K, Wood DE, Yang SC, Gregory K, Hughes M (2013) National comprehensive cancer, Non-small cell lung cancer, version 2.2013. J Natl Compr Canc Netw 11(6):645–653, quiz 653

    PubMed  Google Scholar 

  10. Davidson MR, Gazdar AF, Clarke BE (2013) The pivotal role of pathology in the management of lung cancer. J Thorac Dis 5(Suppl 5):S463–S478

    PubMed Central  PubMed  Google Scholar 

  11. Langer CJ, Besse B, Gualberto A, Brambilla E, Soria JC (2010) The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol 28(36):5311–5320

    Article  PubMed  Google Scholar 

  12. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  CAS  PubMed  Google Scholar 

  14. Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kihara A, Igarashi Y (2004) FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem 279(47):49243–49250

    Article  CAS  PubMed  Google Scholar 

  17. Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM, Conzelmann A (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20(11):2655–2665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jazwinski SM, Conzelmann A (2002) LAG1 puts the focus on ceramide signaling. Int J Biochem Cell Biol 34(11):1491–1495

    Article  CAS  PubMed  Google Scholar 

  19. Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277(38):35642–35649

    Article  CAS  PubMed  Google Scholar 

  20. Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278(44):43452–43459

    Article  CAS  PubMed  Google Scholar 

  21. Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J Biol Chem 281(35):25001–25005

    Article  CAS  PubMed  Google Scholar 

  22. Lahiri S, Futerman AH (2005) LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J Biol Chem 280(40):33735–33738

    Article  CAS  PubMed  Google Scholar 

  23. Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390(Pt 1):263–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283(9):5677–5684

    Article  CAS  PubMed  Google Scholar 

  25. Mizutani Y, Kihara A, Igarashi Y (2006) LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem J 398(3):531–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jennemann R, Rabionet M, Gorgas K, Epstein S, Dalpke A, Rothermel U, Bayerle A, van der Hoeven F, Imgrund S, Kirsch J, Nickel W, Willecke K, Riezman H, Grone HJ, Sandhoff R (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21(3):586–608

    Article  CAS  PubMed  Google Scholar 

  27. Ogretmen B, Pettus BJ, Rossi MJ, Wood R, Usta J, Szulc Z, Bielawska A, Obeid LM, Hannun YA (2002) Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem 277(15):12960–12969

    Article  CAS  PubMed  Google Scholar 

  28. Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20(6):1010–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sultan I, Senkal CE, Ponnusamy S, Bielawski J, Szulc Z, Bielawska A, Hannun YA, Ogretmen B (2006) Regulation of the sphingosine-recycling pathway for ceramide generation by oxidative stress, and its role in controlling c-Myc/Max function. Biochem J 393(Pt 2):513–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kraveka JM, Li L, Szulc ZM, Bielawski J, Ogretmen B, Hannun YA, Obeid LM, Bielawska A (2007) Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem 282(23):16718–16728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Michel C, van Echten-Deckert G, Rother J, Sandhoff K, Wang E, Merrill AH Jr (1997) Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem 272(36):22432–22437

    Article  CAS  PubMed  Google Scholar 

  32. Airola MV, Hannun YA (2013) Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol 215:57–76

    Article  CAS  PubMed  Google Scholar 

  33. Holthuis JC, Luberto C (2010) Tales and mysteries of the enigmatic sphingomyelin synthase family. Adv Exp Med Biol 688:72–85

    Article  CAS  PubMed  Google Scholar 

  34. Villani M, Subathra M, Im YB, Choi Y, Signorelli P, Del Poeta M, Luberto C (2008) Sphingomyelin synthases regulate production of diacylglycerol at the Golgi. Biochem J 414(1):31–41

    Article  CAS  PubMed  Google Scholar 

  35. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(6968):803–809

    Article  CAS  PubMed  Google Scholar 

  36. Hanada K, Kumagai K, Tomishige N, Yamaji T (2009) CERT-mediated trafficking of ceramide. Biochim Biophys Acta 1791(7):684–691

    Article  CAS  PubMed  Google Scholar 

  37. Vitner EB, Futerman AH (2013) Neuronal forms of Gaucher disease. Handb Exp Pharmacol 216:405–419

    Article  CAS  PubMed  Google Scholar 

  38. Liu YY, Hill RA, Li YT (2013) Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 117:59–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pettus BJ, Bielawska A, Subramanian P, Wijesinghe DS, Maceyka M, Leslie CC, Evans JH, Freiberg J, Roddy P, Hannun YA, Chalfant CE (2004) Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 279(12):11320–11326

    Article  CAS  PubMed  Google Scholar 

  40. Stahelin RV, Subramanian P, Vora M, Cho W, Chalfant CE (2007) Ceramide-1-phosphate binds group IVA cytosolic phospholipase a2 via a novel site in the C2 domain. J Biol Chem 282(28):20467–20474

    Article  CAS  PubMed  Google Scholar 

  41. Wijesinghe DS, Massiello A, Subramanian P, Szulc Z, Bielawska A, Chalfant CE (2005) Substrate specificity of human ceramide kinase. J Lipid Res 46(12):2706–2716

    Article  CAS  PubMed  Google Scholar 

  42. Lamour NF, Stahelin RV, Wijesinghe DS, Maceyka M, Wang E, Allegood JC, Merrill AH Jr, Cho W, Chalfant CE (2007) Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis. J Lipid Res 48(6):1293–1304

    Article  CAS  PubMed  Google Scholar 

  43. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781(9):424–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Heffernan-Stroud LA, Obeid LM (2013) Sphingosine kinase 1 in cancer. Adv Cancer Res 117:201–235

    Article  CAS  PubMed  Google Scholar 

  45. Gandy KA, Obeid LM (2013) Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 216:275–303

    Article  CAS  PubMed  Google Scholar 

  46. Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22(20):5491–5500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Stahelin RV, Hwang JH, Kim JH, Park ZY, Johnson KR, Obeid LM, Cho W (2005) The mechanism of membrane targeting of human sphingosine kinase 1. J Biol Chem 280(52):43030–43038

    Article  CAS  PubMed  Google Scholar 

  48. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH Jr, Milstien S, Spiegel S (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280(44):37118–37129

    Article  CAS  PubMed  Google Scholar 

  50. Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22(1):50–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12(9):688–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Orr Gandy KA, Obeid LM (2013) Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim Biophys Acta 1831(1):157–166

    Article  CAS  PubMed  Google Scholar 

  53. Kumar A, Saba JD (2009) Lyase to live by: sphingosine phosphate lyase as a therapeutic target. Expert Opin Ther Targets 13(8):1013–1025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kihara A (2014) Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. Biochim Biophys Acta 1841(5):766–772

    Article  CAS  PubMed  Google Scholar 

  55. Senkal CE, Ponnusamy S, Rossi MJ, Bialewski J, Sinha D, Jiang JC, Jazwinski SM, Hannun YA, Ogretmen B (2007) Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol Cancer Ther 6(2):712–722

    Article  CAS  PubMed  Google Scholar 

  56. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8(10):831–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Separovic D, Breen P, Joseph N, Bielawski J, Pierce JS, Van Buren E, Gudz TI (2012) siRNA-mediated down-regulation of ceramide synthase 1 leads to apoptotic resistance in human head and neck squamous carcinoma cells after photodynamic therapy. Anticancer Res 32(7):2479–2485

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Separovic D, Breen P, Boppana NB, Van Buren E, Joseph N, Kraveka JM, Rahmaniyan M, Li L, Gudz TI, Bielawska A, Bai A, Bielawski J, Pierce JS, Korbelik M (2013) Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. Int J Oncol 43(6):2064–2072

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Min J, Mesika A, Sivaguru M, Van Veldhoven PP, Alexander H, Futerman AH, Alexander S (2007) (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res 5(8):801–812

    Article  CAS  PubMed  Google Scholar 

  60. Senkal CE, Ponnusamy S, Bielawski J, Hannun YA, Ogretmen B (2010) Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J 24(1):296–308

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Senkal CE, Ponnusamy S, Manevich Y, Meyers-Needham M, Saddoughi SA, Mukhopadyay A, Dent P, Bielawski J, Ogretmen B (2011) Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J Biol Chem 286(49):42446–42458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Hoeferlin LA, Fekry B, Ogretmen B, Krupenko SA, Krupenko NI (2013) Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 288(18):12880–12890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Gu X, Song X, Dong Y, Cai H, Walters E, Zhang R, Pang X, Xie T, Guo Y, Sridhar R, Califano JA (2008) Vitamin E succinate induces ceramide-mediated apoptosis in head and neck squamous cell carcinoma in vitro and in vivo. Clin Cancer Res 14(6):1840–1848

    Article  CAS  PubMed  Google Scholar 

  64. Clarke CJ, Truong TG, Hannun YA (2007) Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem 282(2):1384–1396

    Article  CAS  PubMed  Google Scholar 

  65. Soans E, Evans SC, Cipolla C, Fernandes E (2014) Characterizing the sphingomyelinase pathway triggered by PRIMA-1 derivatives in lung cancer cells with differing p53 status. Anticancer Res 34(7):3271–3283

    CAS  PubMed  Google Scholar 

  66. Kishikawa K, Chalfant CE, Perry DK, Bielawska A, Hannun YA (1999) Phosphatidic acid is a potent and selective inhibitor of protein phosphatase 1 and an inhibitor of ceramide-mediated responses. J Biol Chem 274(30):21335–21341

    Article  CAS  PubMed  Google Scholar 

  67. Chalfant CE, Ogretmen B, Galadari S, Kroesen BJ, Pettus BJ, Hannun YA (2001) FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem 276(48):44848–44855

    Article  CAS  PubMed  Google Scholar 

  68. Mukhopadhyay A, Saddoughi SA, Song P, Sultan I, Ponnusamy S, Senkal CE, Snook CF, Arnold HK, Sears RC, Hannun YA, Ogretmen B (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23(3):751–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Szulc ZM, Bielawski J, Gracz H, Gustilo M, Mayroo N, Hannun YA, Obeid LM, Bielawska A (2006) Tailoring structure-function and targeting properties of ceramides by site-specific cationization. Bioorg Med Chem 14(21):7083–7104

    Article  CAS  PubMed  Google Scholar 

  70. Rossi MJ, Sundararaj K, Koybasi S, Phillips MS, Szulc ZM, Bielawska A, Day TA, Obeid LM, Hannun YA, Ogretmen B (2005) Inhibition of growth and telomerase activity by novel cationic ceramide analogs with high solubility in human head and neck squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132(1):55–62

    Article  PubMed  Google Scholar 

  71. Senkal CE, Ponnusamy S, Rossi MJ, Sundararaj K, Szulc Z, Bielawski J, Bielawska A, Meyer M, Cobanoglu B, Koybasi S, Sinha D, Day TA, Obeid LM, Hannun YA, Ogretmen B (2006) Potent antitumor activity of a novel cationic pyridinium-ceramide alone or in combination with gemcitabine against human head and neck squamous cell carcinomas in vitro and in vivo. J Pharmacol Exp Ther 317(3):1188–1199

    Article  CAS  PubMed  Google Scholar 

  72. Beckham TH, Lu P, Jones EE, Marrison T, Lewis CS, Cheng JC, Ramshesh VK, Beeson G, Beeson CC, Drake RR, Bielawska A, Bielawski J, Szulc ZM, Ogretmen B, Norris JS, Liu X (2013) LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther 344(1):167–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Syed I, Szulc ZM, Ogretmen B, Kowluru A (2012) L-threo-C6-pyridinium-ceramide bromide, a novel cationic ceramide, induces NADPH oxidase activation, mitochondrial dysfunction and loss in cell viability in INS 832/13 beta-cells. Cell Physiol Biochem 30(4):1051–1058

    Article  CAS  PubMed  Google Scholar 

  74. Korbelik M, Zhang W, Separovic D (2011) Amplification of cancer cell apoptosis in photodynamic therapy-treated tumors by adjuvant ceramide analog LCL29. Lasers Surg Med 43(7):614–620

    Article  PubMed  Google Scholar 

  75. Separovic D, Saad ZH, Edwin EA, Bielawski J, Pierce JS, Buren EV, Bielawska A (2011) C16-ceramide analog combined with Pc 4 photodynamic therapy evokes enhanced total ceramide accumulation, promotion of DEVDase activation in the absence of apoptosis, and augmented overall cell killing. J Lipids 2011:713867

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9(11):883–897

    Article  CAS  PubMed  Google Scholar 

  77. Schmid G, Guba M, Papyan A, Ischenko I, Bruckel M, Bruns CJ, Jauch KW, Graeb C (2005) FTY720 inhibits tumor growth and angiogenesis. Transplant Proc 37(1):110–111

    Article  CAS  PubMed  Google Scholar 

  78. Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J, Bielawski J, Szulc ZM, Thomas RJ, Selvam SP, Senkal CE, Garrett-Mayer E, De Palma RM, Fedarovich D, Liu A, Habib AA, Stahelin RV, Perrotti D, Ogretmen B (2013) Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med 5(1):105–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Beckham TH, Elojeimy S, Cheng JC, Turner LS, Hoffman SR, Norris JS, Liu X (2010) Targeting sphingolipid metabolism in head and neck cancer: rational therapeutic potentials. Expert Opin Ther Targets 14(5):529–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Norris JS (2013) The sphingolipid response to cancer therapy. Adv Cancer Res 117:xiii–xvii

    Article  PubMed  Google Scholar 

  81. Ogretmen B, Hannun YA (2001) Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat 4(6):368–377

    Article  CAS  PubMed  Google Scholar 

  82. Inokuchi J, Jimbo M, Momosaki K, Shimeno H, Nagamatsu A, Radin NS (1990) Inhibition of experimental metastasis of murine Lewis lung carcinoma by an inhibitor of glucosylceramide synthase and its possible mechanism of action. Cancer Res 50(20):6731–6737

    CAS  PubMed  Google Scholar 

  83. Morad SA, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13(1):51–65

    Article  CAS  PubMed  Google Scholar 

  84. Noguchi M, Kabayama K, Uemura S, Kang BW, Saito M, Igarashi Y, Inokuchi J (2006) Endogenously produced ganglioside GM3 endows etoposide and doxorubicin resistance by up-regulating Bcl-2 expression in 3LL Lewis lung carcinoma cells. Glycobiology 16(7):641–650

    Article  CAS  PubMed  Google Scholar 

  85. Chiu WH, Chen HH, Chang JY, Luo SJ, Li CL, Chen CL, Su WC, Lin CF (2014) Inhibiting glucosylceramide synthase facilitates the radiosensitizing effects of vinorelbine in lung adenocarcinoma cells. Cancer Lett 349(2):144–151

    Article  CAS  PubMed  Google Scholar 

  86. Rath G, Schneider C, Langlois B, Sartelet H, Morjani H, Btaouri HE, Dedieu S, Martiny L (2009) De novo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. Int J Biochem Cell Biol 41(5):1165–1172

    Article  CAS  PubMed  Google Scholar 

  87. Lamour NF, Chalfant CE (2008) Ceramide kinase and the ceramide-1-phosphate/cPLA2alpha interaction as a therapeutic target. Curr Drug Targets 9(8):674–682

    Article  CAS  PubMed  Google Scholar 

  88. Mitra P, Maceyka M, Payne SG, Lamour N, Milstien S, Chalfant CE, Spiegel S (2007) Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells. FEBS Lett 581(4):735–740

    Article  CAS  PubMed  Google Scholar 

  89. Pastukhov O, Schwalm S, Zangemeister-Wittke U, Fabbro D, Bornancin F, Japtok L, Kleuser B, Pfeilschifter J, Huwiler A (2014) The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death. Br J Pharmacol 171(24):5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elojeimy S, Liu X, McKillop JC, El-Zawahry AM, Holman DH, Cheng JY, Meacham WD, Mahdy AE, Saad AF, Turner LS, Cheng J, A Day T, Dong JY, Bielawska A, Hannun YA, Norris JS (2007) Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy. Mol Ther 15(7):1259–1263

    Article  CAS  PubMed  Google Scholar 

  91. Ramirez de Molina A, de la Cueva A, Machado-Pinilla R, Rodriguez-Fanjul V, Gomez del Pulgar T, Cebrian A, Perona R, Lacal JC (2012) Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase alpha inhibition. Curr Cancer Drug Targets 12(6):617–624

    Article  CAS  PubMed  Google Scholar 

  92. Lee SK, Park SM, Im C (2011) Cytotoxicities and quantitative structure activity relationships of B13 sulfonamides in HT-29 and A549 cells. Korean J Physiol Pharmacol 15(6):423–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Munoz-Olaya JM, Matabosch X, Bedia C, Egido-Gabas M, Casas J, Llebaria A, Delgado A, Fabrias G (2008) Synthesis and biological activity of a novel inhibitor of dihydroceramide desaturase. ChemMedChem 3(6):946–953

    Article  CAS  PubMed  Google Scholar 

  94. Camacho L, Simbari F, Garrido M, Abad JL, Casas J, Delgado A, Fabrias G (2012) 3-Deoxy-3,4-dehydro analogs of XM462. Preparation and activity on sphingolipid metabolism and cell fate. Bioorg Med Chem 20(10):3173–3179

    Article  CAS  PubMed  Google Scholar 

  95. Shirai K, Kaneshiro T, Wada M, Furuya H, Bielawski J, Hannun YA, Obeid LM, Ogretmen B, Kawamori T (2011) A role of sphingosine kinase 1 in head and neck carcinogenesis. Cancer Prev Res (Phila) 4(3):454–462

    Article  CAS  Google Scholar 

  96. Tamashiro PM, Furuya H, Shimizu Y, Kawamori T (2014) Sphingosine kinase 1 mediates head & neck squamous cell carcinoma invasion through sphingosine 1-phosphate receptor 1. Cancer Cell Int 14(1):76

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Tamashiro PM, Furuya H, Shimizu Y, Iino K, Kawamori T (2013) The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 3(3):481–513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Sinha UK, Schorn VJ, Hochstim C, Chinn SB, Zhu S, Masood R (2011) Increased radiation sensitivity of head and neck squamous cell carcinoma with sphingosine kinase 1 inhibition. Head Neck 33(2):178–188

    Article  PubMed  Google Scholar 

  99. Masood R, Roy I, Zu S, Hochstim C, Yong KT, Law WC, Ding H, Sinha UK, Prasad PN (2012) Gold nanorod-sphingosine kinase siRNA nanocomplexes: a novel therapeutic tool for potent radiosensitization of head and neck cancer. Integr Biol (Camb) 4(2):132–141

    Article  CAS  Google Scholar 

  100. Kotelevets N, Fabbro D, Huwiler A, Zangemeister-Wittke U (2012) Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis. PLoS One 7(6), e39209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Song L, Xiong H, Li J, Liao W, Wang L, Wu J, Li M (2011) Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clin Cancer Res 17(7):1839–1849

    Article  CAS  PubMed  Google Scholar 

  102. Schiefler C, Piontek G, Doescher J, Schuettler D, Misslbeck M, Rudelius M, Haug A, Reiter R, Brockhoff G, Pickhard A (2014) Inhibition of SphK1 reduces radiation-induced migration and enhances sensitivity to cetuximab treatment by affecting the EGFR / SphK1 crosstalk. Oncotarget 5(20):9877–9888

    Article  PubMed Central  PubMed  Google Scholar 

  103. Rutherford C, Childs S, Ohotski J, McGlynn L, Riddick M, MacFarlane S, Tasker D, Pyne S, Pyne NJ, Edwards J, Palmer TM (2013) Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis 4, e927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, Shao Y, Sabbadini R, Ogretmen B (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 4(8):761–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, Honn KV, Klinge CM, Lee MJ (2012) Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 40(5):1619–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323(5913):524–527

    Article  CAS  PubMed  Google Scholar 

  107. Bradley E, Dasgupta S, Jiang X, Zhao X, Zhu G, He Q, Dinkins M, Bieberich E, Wang G (2014) Critical role of spns2, a sphingosine-1-phosphate transporter, in lung cancer cell survival and migration. PLoS One 9(10), e110119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Koybasi S, Senkal CE, Sundararaj K, Spassieva S, Bielawski J, Osta W, Day TA, Jiang JC, Jazwinski SM, Hannun YA, Obeid LM, Ogretmen B (2004) Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J Biol Chem 279(43):44311–44319

    Article  CAS  PubMed  Google Scholar 

  109. Meyers-Needham M, Ponnusamy S, Gencer S, Jiang W, Thomas RJ, Senkal CE, Ogretmen B (2012) Concerted functions of HDAC1 and microRNA-574-5p repress alternatively spliced ceramide synthase 1 expression in human cancer cells. EMBO Mol Med 4(2):78–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Karahatay S, Thomas K, Koybasi S, Senkal CE, Elojeimy S, Liu X, Bielawski J, Day TA, Gillespie MB, Sinha D, Norris JS, Hannun YA, Ogretmen B (2007) Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett 256(1):101–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Saddoughi SA, Garrett-Mayer E, Chaudhary U, O'Brien PE, Afrin LB, Day TA, Gillespie MB, Sharma AK, Wilhoit CS, Bostick R, Senkal CE, Hannun YA, Bielawski J, Simon GR, Shirai K, Ogretmen B (2011) Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C(1)(8)-ceramide as a novel biomarker for monitoring response. Clin Cancer Res 17(18):6097–6105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Alberg AJ, Armeson K, Pierce JS, Bielawski J, Bielawska A, Visvanathan K, Hill EG, Ogretmen B (2013) Plasma sphingolipids and lung cancer: a population-based, nested case-control study. Cancer Epidemiol Biomarkers Prev 22(8):1374–1382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Guo Y, Wang X, Qiu L, Qin X, Liu H, Wang Y, Li F, Wang X, Chen G, Song G, Li F, Guo S, Li Z (2012) Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clin Chim Acta 414:135–141

    Article  CAS  PubMed  Google Scholar 

  114. Jones EE, Dworski S, Canals D, Casas J, Fabrias G, Schoenling D, Levade T, Denlinger C, Hannun YA, Medin JA, Drake RR (2014) On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 86(16):8303–8311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Johnson KR, Johnson KY, Crellin HG, Ogretmen B, Boylan AM, Harley RA, Obeid LM (2005) Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J Histochem Cytochem 53(9):1159–1166

    Article  CAS  PubMed  Google Scholar 

  116. Facchinetti MM, Gandini NA, Fermento ME, Sterin-Speziale NB, Ji Y, Patel V, Gutkind JS, Rivadulla MG, Curino AC (2010) The expression of sphingosine kinase-1 in head and neck carcinoma. Cells Tissues Organs 192(5):314–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Wang Q, Li J, Li G, Li Y, Xu C, Li M, Xu G, Fu S (2014) Prognostic significance of sphingosine kinase 2 expression in non-small cell lung cancer. Tumour Biol 35(1):363–368

    Article  CAS  PubMed  Google Scholar 

  118. Zhang C, Lin X, Song Y, Zhang X, Li H, Wang Q (2014) Overexpression of glucosylceramide synthase and its significance in the clinical outcome of non-small cell lung cancer. Chin Med J (Engl) 127(17):3071–3076

    Google Scholar 

Download references

Acknowledgement

This work was supported by: NIH research grants GM062887 and P01CA097132, and Veterans Affairs Merit Award to LMO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can E. Senkal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senkal, C.E., Obeid, L.M. (2015). Sphingolipids in the Pathogenesis of Head and Neck and Lung Cancers: Translational Aspects for Therapy and Biomarker Development. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_11

Download citation

Publish with us

Policies and ethics