Skip to main content

Abstract

The term sphingolipid was coined by J.L.W. Thudichum before the turn of the nineteenth century, referring to the enigmatic (related to the Sphinx myth) nature of this class of molecules. One hundred thirty years later, the enigma is not yet completely solved. Nevertheless, much progress has been made, shedding light on the numerous roles these lipids play in eukaryotes. How sphingolipids are synthesized, transformed and degraded in mammalian cells, and how some of them transduce signals and regulate biological functions is reviewed in this chapter. Special attention is given to those sphingolipid species which regulate key aspects of the development of malignancies in humans, and therefore represent potential targets for therapy.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-20750-6_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cer:

Ceramide

Cer1P:

Ceramide 1-phosphate

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

GalCer:

Galactosylceramide

GlcCer:

Glucosylceramide

GSL:

Glycosphingolipid

S1P:

Sphingosine 1-phosphate

SL:

Sphingolipid

SM:

Sphingomyelin

SPC:

Sphingosylphosphocholine

References

  1. Merrill AH Jr, Stokes TH, Momin A et al (2009) Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 50(Suppl):S97–102

    PubMed Central  PubMed  Google Scholar 

  2. Sabourdy F, Kedjouar B, Sorli SC et al (2008) Functions of sphingolipid metabolism in mammals—lessons from genetic defects. Biochim Biophys Acta 1781:145–183

    Article  CAS  PubMed  Google Scholar 

  3. Jennemann R, Grone HJ (2013) Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 52:231–248

    Article  CAS  PubMed  Google Scholar 

  4. Albinet V, Bats ML, Bedia C et al (2013) Genetic disorders of simple sphingolipid metabolism. Handb Exp Pharmacol 7:127–152. doi:10.1007/978-3-7091-1368-4

    Article  CAS  Google Scholar 

  5. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  6. Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503

    Article  CAS  PubMed  Google Scholar 

  7. Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Morad SA, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13:51–65

    Article  CAS  PubMed  Google Scholar 

  9. Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12:688–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51:50–62

    Article  PubMed  CAS  Google Scholar 

  11. Penno A, Reilly MM, Houlden H et al (2010) Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 285:11178–11187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bertea M, Rutti MF, Othman A et al (2010) Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis 9:84

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Funato K, Riezman H (2001) Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J Cell Biol 155:949–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hanada K, Kumagai K, Yasuda S et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809

    Article  CAS  PubMed  Google Scholar 

  15. Halter D, Neumann S, van Dijk SM et al (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179:101–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Simanshu DK, Kamlekar RK, Wijesinghe DS et al (2013) Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 500:463–467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Swanton C, Marani M, Pardo O et al (2007) Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11:498–512

    Article  CAS  PubMed  Google Scholar 

  18. Wennekes T, van den Berg RJ, Boot RG, van der Marel GA, Overkleeft HS, Aerts JM (2009) Glycosphingolipids—nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 48:8848–8869

    Article  CAS  PubMed  Google Scholar 

  19. D’Angelo G, Capasso S, Sticco L, Russo D (2013) Glycosphingolipids: synthesis and functions. FEBS J 280:6338–6353

    Article  PubMed  CAS  Google Scholar 

  20. Kolter T, Sandhoff K (2010) Lysosomal degradation of membrane lipids. FEBS Lett 584:1700–1712

    Article  CAS  PubMed  Google Scholar 

  21. Kihara A (2014) Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. Biochim Biophys Acta 1841:766–772

    Article  CAS  PubMed  Google Scholar 

  22. Tani M, Ito M, Igarashi Y (2007) Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19:229–237

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins RW, Canals D, Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21:836–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Duan RD (2011) Physiological functions and clinical implications of sphingolipids in the gut. J Dig Dis 12:60–70

    Article  CAS  PubMed  Google Scholar 

  25. Birbes H, El Bawab S, Obeid LM, Hannun YA (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul 42:113–129

    Article  CAS  PubMed  Google Scholar 

  26. Morales A, Colell A, Mari M, Garcia-Ruiz C, Fernandez-Checa JC (2004) Glycosphingolipids and mitochondria: role in apoptosis and disease. Glycoconj J 20:579–588

    Article  CAS  PubMed  Google Scholar 

  27. Lucki NC, Sewer MB (2012) Nuclear sphingolipid metabolism. Annu Rev Physiol 74:131–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781:424–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hannun YA, Bell RM (1987) Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science 235:670–674

    Article  CAS  PubMed  Google Scholar 

  30. Breslow DK, Weissman JS (2010) Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 40:267–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Miyatake T, Suzuki K (1972) Globoid cell leukodystrophy: additional deficiency of psychosine galactosidase. Biochem Biophys Res Commun 48:539–543

    CAS  PubMed  Google Scholar 

  32. Vanier MT, Svennerholm L (1975) Chemical pathology of Krabbe’s disease. III. Ceramide-hexosides and gangliosides of brain. Acta Paediatr Scand 64:641–648

    Article  CAS  PubMed  Google Scholar 

  33. Im DS, Heise CE, Nguyen T, O’Dowd BF, Lynch KR (2001) Identification of a molecular target of psychosine and its role in globoid cell formation. J Cell Biol 153:429–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Radu CG, Cheng D, Nijagal A et al (2006) Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol 26:668–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wang JQ, Kon J, Mogi C et al (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 279:45626–45633

    Article  CAS  PubMed  Google Scholar 

  36. Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264:19076–19080

    CAS  PubMed  Google Scholar 

  37. Kolesnick RN (1989) Sphingomyelinase action inhibits phorbol ester-induced differentiation of human promyelocytic leukemic (HL-60) cells. J Biol Chem 264:7617–7623

    CAS  PubMed  Google Scholar 

  38. Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128

    CAS  PubMed  Google Scholar 

  39. Levade T, Jaffrezou JP (1999) Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1438:1–17

    Article  CAS  PubMed  Google Scholar 

  40. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414

    Article  CAS  PubMed  Google Scholar 

  41. Park JW, Park WJ, Futerman AH (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta 1841:671–681

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe M, Kitano T, Kondo T et al (2004) Increase of nuclear ceramide through caspase-3-dependent regulation of the “sphingomyelin cycle” in Fas-induced apoptosis. Cancer Res 64:1000–1007

    Article  CAS  PubMed  Google Scholar 

  43. Lafont E, Milhas D, Carpentier S et al (2010) Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ 17:642–654

    Article  CAS  PubMed  Google Scholar 

  44. Bedia C, Casas J, Andrieu-Abadie N, Fabrias G, Levade T (2011) Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J Biol Chem 286:28200–28209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Valaperta R, Chigorno V, Basso L et al (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229

    Article  CAS  PubMed  Google Scholar 

  46. Sorli SC, Colie S, Albinet V et al (2013) The nonlysosomal beta-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB J 27:489–498

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh TK, Bian J, Gill DL (1990) Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 248:1653–1656

    Article  CAS  PubMed  Google Scholar 

  48. Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114:155–167

    Article  CAS  PubMed  Google Scholar 

  49. Auge N, Nikolova-Karakashian M, Carpentier S et al (1999) Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274:21533–21538

    Article  CAS  PubMed  Google Scholar 

  50. Kumar A, Byun HS, Bittman R, Saba JD (2011) The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner. Cell Signal 23:1144–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Chipuk JE, McStay GP, Bharti A et al (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Cuvillier O, Pirianov G, Kleuser B et al (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  CAS  PubMed  Google Scholar 

  53. Mesicek J, Lee H, Feldman T et al (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22:1300–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560

    Article  CAS  PubMed  Google Scholar 

  55. Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S (2010) Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 688:141–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lee MJ, Van Brocklyn JR, Thangada S et al (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555

    Article  CAS  PubMed  Google Scholar 

  58. Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Alvarez SE, Harikumar KB, Hait NC et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hait NC, Allegood J, Maceyka M et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Strub GM, Paillard M, Liang J et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25:600–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Laviad EL, Albee L, Pankova-Kholmyansky I et al (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283:5677–5684

    Article  CAS  PubMed  Google Scholar 

  63. Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261:12604–12609

    CAS  PubMed  Google Scholar 

  64. Merrill AH Jr, Sereni AM, Stevens VL, Hannun YA, Bell RM, Kinkade JM Jr (1986) Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem 261:12610–12615

    CAS  PubMed  Google Scholar 

  65. Wilson E, Olcott MC, Bell RM, Merrill AH Jr, Lambeth JD (1986) Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role of protein kinase C in activation of the burst. J Biol Chem 261:12616–12623

    CAS  PubMed  Google Scholar 

  66. Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585:153–162

    Article  CAS  PubMed  Google Scholar 

  67. Symolon H, Schmelz EM, Dillehay DL, Merrill AH Jr (2004) Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. J Nutr 134:1157–1161

    CAS  PubMed  Google Scholar 

  68. Fyrst H, Oskouian B, Bandhuvula P et al (2009) Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis. Cancer Res 69:9457–9464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kumar A, Pandurangan AK, Lu F et al (2012) Chemopreventive sphingadienes downregulate Wnt signaling via a PP2A/Akt/GSK3beta pathway in colon cancer. Carcinogenesis 33:1726–1735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Degagne E, Pandurangan A, Bandhuvula P et al (2014) Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. J Clin Invest 124:5368–5384

    Article  PubMed Central  PubMed  Google Scholar 

  71. Snook CF, Jones JA, Hannun YA (2006) Sphingolipid-binding proteins. Biochim Biophys Acta 1761:927–946

    Article  CAS  PubMed  Google Scholar 

  72. Saddoughi SA, Ogretmen B (2013) Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res 117:37–58

    Article  CAS  PubMed  Google Scholar 

  73. Young MM, Kester M, Wang HG (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54:5–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Garcia-Barros M, Coant N, Truman JP, Snider AJ, Hannun YA (2014) Sphingolipids in colon cancer. Biochim Biophys Acta 1841:773–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Huwiler A, Fabbro D, Pfeilschifter J (1998) Selective ceramide binding to protein kinase C-alpha and -delta isoenzymes in renal mesangial cells. Biochemistry 37:14556–14562

    Article  CAS  PubMed  Google Scholar 

  76. Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280:26415–26424

    Article  CAS  PubMed  Google Scholar 

  77. Yin X, Zafrullah M, Lee H, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2009) A ceramide-binding C1 domain mediates kinase suppressor of ras membrane translocation. Cell Physiol Biochem 24:219–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Mukhopadhyay A, Saddoughi SA, Song P et al (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23:751–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Edmond V, Dufour F, Poiroux G et al (2015) Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility. Oncogene 34:996–1005. doi:10.1038/onc.2014.55

  80. van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211

    Article  PubMed Central  PubMed  Google Scholar 

  81. Goni FM, Alonso A (2006) Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758:1902–1921

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Li X, Becker KA, Gulbins E (2009) Ceramide-enriched membrane domains—structure and function. Biochim Biophys Acta 1788:178–183

    Article  CAS  PubMed  Google Scholar 

  83. Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 99:10231–10233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Fredman P, Hedberg K, Brezicka T (2003) Gangliosides as therapeutic targets for cancer. BioDrugs 17:155–167

    Article  CAS  PubMed  Google Scholar 

  85. Furukawa K, Hamamura K, Aixinjueluo W, Furukawa K (2006) Biosignals modulated by tumor-associated carbohydrate antigens: novel targets for cancer therapy. Ann N Y Acad Sci 1086:185–198

    Article  CAS  PubMed  Google Scholar 

  86. Handa K, Hakomori SI (2012) Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 29:627–637

    Article  CAS  PubMed  Google Scholar 

  87. Giussani P, Tringali C, Riboni L, Viani P, Venerando B (2014) Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 15:4356–4392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Hossain DM, Mohanty S, Ray P, Das T, Sa G (2012) Tumor gangliosides and T cells: a deadly encounter. Front Biosci (Schol Ed) 4:502–519

    Article  Google Scholar 

  89. Liu Y, Wondimu A, Yan S, Bobb D, Ladisch S (2013) Tumor gangliosides accelerate murine tumor angiogenesis. Angiogenesis 17:563–571. doi:10.1007/s10456-013-9403-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Avery K, Avery S, Shepherd J, Heath PR, Moore H (2008) Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells Dev 17:1195–1205

    Article  CAS  PubMed  Google Scholar 

  92. Ader I, Malavaud B, Cuvillier O (2009) When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res 69:3723–3726

    Article  CAS  PubMed  Google Scholar 

  93. Xia P, Gamble JR, Wang L et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10:1527–1530

    Article  CAS  PubMed  Google Scholar 

  94. Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  95. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  96. Moon SK, Kim HM, Lee YC, Kim CH (2004) Disialoganglioside (GD3) synthase gene expression suppresses vascular smooth muscle cell responses via the inhibition of ERK1/2 phosphorylation, cell cycle progression, and matrix metalloproteinase-9 expression. J Biol Chem 279:33063–33070

    Article  CAS  PubMed  Google Scholar 

  97. Wang H, Isaji T, Satoh M, Li D, Arai Y, Gu J (2013) Antitumor effects of exogenous ganglioside GM3 on bladder cancer in an orthotopic cancer model. Urology 81(210):e211–215

    Google Scholar 

  98. Shirahama T, Sweeney EA, Sakakura C et al (1997) In vitro and in vivo induction of apoptosis by sphingosine and N, N-dimethylsphingosine in human epidermoid carcinoma KB-3-1 and its multidrug-resistant cells. Clin Cancer Res 3:257–264

    CAS  PubMed  Google Scholar 

  99. Desai NN, Carlson RO, Mattie ME et al (1993) Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts. J Cell Biol 121:1385–1395

    Article  CAS  PubMed  Google Scholar 

  100. Endo K, Igarashi Y, Nisar M, Zhou QH, Hakomori S (1991) Cell membrane signaling as target in cancer therapy: inhibitory effect of N,N-dimethyl and N,N,N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res 51:1613–1618

    CAS  PubMed  Google Scholar 

  101. Webb TJ, Li X, Giuntoli RL 2nd et al (2012) Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res 72:3744–3752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Zhou D (2006) The immunological function of iGb3. Curr Protein Pept Sci 7:325–333

    Article  CAS  PubMed  Google Scholar 

  103. Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204:2641–2653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Maru M, Haraguchi M, Higashi H et al (1993) Anti-tumor activity of ceramides and glycosphingolipids in a murine tumor system. Int J Cancer 53:645–650

    Article  CAS  PubMed  Google Scholar 

  105. van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM (2010) Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J 12:171–180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Parameswaran R, Lim M, Arutyunyan A et al (2013) O-acetylated N-acetylneuraminic acid as a novel target for therapy in human pre-B acute lymphoblastic leukemia. J Exp Med 210:805–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 271:19530–19536

    Article  CAS  PubMed  Google Scholar 

  108. Ponnusamy S, Meyers-Needham M, Senkal CE et al (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Bocci G, Fioravanti A, Orlandi P et al (2012) Metronomic ceramide analogs inhibit angiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia 14:833–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Seyfried TN, Mukherjee P (2010) Ganglioside GM3 is antiangiogenic in malignant brain cancer. J Oncol 2010:961243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  CAS  PubMed  Google Scholar 

  112. Cazet A, Groux-Degroote S, Teylaert B et al (2009) GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem 390:601–609

    Article  CAS  PubMed  Google Scholar 

  113. Yan Q, Bach DQ, Gatla N et al (2013) Deacetylated GM3 promotes uPAR-associated membrane molecular complex to activate p38 MAPK in metastatic melanoma. Mol Cancer Res 11:665–675

    Article  CAS  PubMed  Google Scholar 

  114. Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G (2014) The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets 18:95–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Takenaga M, Igarashi R, Matsumoto K et al (1999) Lipid microsphere preparation of a lipophilic ceramide derivative suppresses colony formation in a murine experimental pulmonary metastasis model. J Drug Target 7:187–195

    Article  CAS  PubMed  Google Scholar 

  116. Beil M, Micoulet A, von Wichert G et al (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat Cell Biol 5:803–811

    Article  CAS  PubMed  Google Scholar 

  117. Sadahira Y, Ruan F, Hakomori S, Igarashi Y (1992) Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A 89:9686–9690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Birks SM, Danquah JO, King L, Vlasak R, Gorecki DC, Pilkington GJ (2011) Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma. Neuro Oncol 13:950–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Bennaceur K, Popa I, Chapman JA et al (2009) Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology 19:576–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  CAS  PubMed  Google Scholar 

  121. Kota V, Dhople VM, Fullbright G et al (2013) 2′-Hydroxy C16-ceramide induces apoptosis-associated proteomic changes in C6 glioma cells. J Proteome Res 12:4366–4375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Sakakura C, Sweeney EA, Shirahama T, Hakomori S, Igarashi Y (1996) Suppression of bcl-2 gene expression by sphingosine in the apoptosis of human leukemic HL-60 cells during phorbol ester-induced terminal differentiation. FEBS Lett 379:177–180

    Article  CAS  PubMed  Google Scholar 

  123. Bleicher RJ, Cabot MC (2002) Glucosylceramide synthase and apoptosis. Biochim Biophys Acta 1585:172–178

    Article  CAS  PubMed  Google Scholar 

  124. Bektas M, Jolly PS, Muller C, Eberle J, Spiegel S, Geilen CC (2005) Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24:178–187

    Article  CAS  PubMed  Google Scholar 

  125. Sauer B, Gonska H, Manggau M et al (2005) Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie 60:298–304

    CAS  PubMed  Google Scholar 

  126. Li QF, Wu CT, Guo Q, Wang H, Wang LS (2008) Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem Biophys Res Commun 371:159–162

    Article  CAS  PubMed  Google Scholar 

  127. Colie S, Van Veldhoven PP, Kedjouar B et al (2009) Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res 69:9346–9353

    Article  CAS  PubMed  Google Scholar 

  128. Lee H, Deng J, Kujawski M et al (2010) STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 16:1421–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

Support to TL’s team by INSERM, Université Paul Sabatier, ANR (SphingoDR program), RITC, Ligue Nationale Contre le Cancer (Equipe Labellisée 2013), and VML is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Levade M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colacios, C., Sabourdy, F., Andrieu-Abadie, N., Ségui, B., Levade, T. (2015). Basics of Sphingolipid Metabolism and Signalling. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_1

Download citation

Publish with us

Policies and ethics