Advertisement

Basics of Sphingolipid Metabolism and Signalling

  • Céline Colacios
  • Frédérique Sabourdy
  • Nathalie Andrieu-Abadie
  • Bruno Ségui
  • Thierry LevadeEmail author

Abstract

The term sphingolipid was coined by J.L.W. Thudichum before the turn of the nineteenth century, referring to the enigmatic (related to the Sphinx myth) nature of this class of molecules. One hundred thirty years later, the enigma is not yet completely solved. Nevertheless, much progress has been made, shedding light on the numerous roles these lipids play in eukaryotes. How sphingolipids are synthesized, transformed and degraded in mammalian cells, and how some of them transduce signals and regulate biological functions is reviewed in this chapter. Special attention is given to those sphingolipid species which regulate key aspects of the development of malignancies in humans, and therefore represent potential targets for therapy.

Keywords

Ceramide Sphingosine 1-phosphate Sphingomyelin Receptor Oncometabolite Membrane Glycolipid 

Abbreviations

Cer

Ceramide

Cer1P

Ceramide 1-phosphate

DAG

Diacylglycerol

ER

Endoplasmic reticulum

GalCer

Galactosylceramide

GlcCer

Glucosylceramide

GSL

Glycosphingolipid

S1P

Sphingosine 1-phosphate

SL

Sphingolipid

SM

Sphingomyelin

SPC

Sphingosylphosphocholine

Notes

Acknowledgement

Support to TL’s team by INSERM, Université Paul Sabatier, ANR (SphingoDR program), RITC, Ligue Nationale Contre le Cancer (Equipe Labellisée 2013), and VML is gratefully acknowledged.

References

  1. 1.
    Merrill AH Jr, Stokes TH, Momin A et al (2009) Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 50(Suppl):S97–102PubMedCentralPubMedGoogle Scholar
  2. 2.
    Sabourdy F, Kedjouar B, Sorli SC et al (2008) Functions of sphingolipid metabolism in mammals—lessons from genetic defects. Biochim Biophys Acta 1781:145–183PubMedCrossRefGoogle Scholar
  3. 3.
    Jennemann R, Grone HJ (2013) Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 52:231–248PubMedCrossRefGoogle Scholar
  4. 4.
    Albinet V, Bats ML, Bedia C et al (2013) Genetic disorders of simple sphingolipid metabolism. Handb Exp Pharmacol 7:127–152. doi: 10.1007/978-3-7091-1368-4 CrossRefGoogle Scholar
  5. 5.
    Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150PubMedCrossRefGoogle Scholar
  6. 6.
    Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503PubMedCrossRefGoogle Scholar
  7. 7.
    Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Morad SA, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13:51–65PubMedCrossRefGoogle Scholar
  9. 9.
    Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12:688–702PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51:50–62PubMedCrossRefGoogle Scholar
  11. 11.
    Penno A, Reilly MM, Houlden H et al (2010) Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 285:11178–11187PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bertea M, Rutti MF, Othman A et al (2010) Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis 9:84PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Funato K, Riezman H (2001) Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J Cell Biol 155:949–959PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hanada K, Kumagai K, Yasuda S et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809PubMedCrossRefGoogle Scholar
  15. 15.
    Halter D, Neumann S, van Dijk SM et al (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179:101–115PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Simanshu DK, Kamlekar RK, Wijesinghe DS et al (2013) Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 500:463–467PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Swanton C, Marani M, Pardo O et al (2007) Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11:498–512PubMedCrossRefGoogle Scholar
  18. 18.
    Wennekes T, van den Berg RJ, Boot RG, van der Marel GA, Overkleeft HS, Aerts JM (2009) Glycosphingolipids—nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 48:8848–8869PubMedCrossRefGoogle Scholar
  19. 19.
    D’Angelo G, Capasso S, Sticco L, Russo D (2013) Glycosphingolipids: synthesis and functions. FEBS J 280:6338–6353PubMedCrossRefGoogle Scholar
  20. 20.
    Kolter T, Sandhoff K (2010) Lysosomal degradation of membrane lipids. FEBS Lett 584:1700–1712PubMedCrossRefGoogle Scholar
  21. 21.
    Kihara A (2014) Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. Biochim Biophys Acta 1841:766–772PubMedCrossRefGoogle Scholar
  22. 22.
    Tani M, Ito M, Igarashi Y (2007) Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19:229–237PubMedCrossRefGoogle Scholar
  23. 23.
    Jenkins RW, Canals D, Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21:836–846PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Duan RD (2011) Physiological functions and clinical implications of sphingolipids in the gut. J Dig Dis 12:60–70PubMedCrossRefGoogle Scholar
  25. 25.
    Birbes H, El Bawab S, Obeid LM, Hannun YA (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul 42:113–129PubMedCrossRefGoogle Scholar
  26. 26.
    Morales A, Colell A, Mari M, Garcia-Ruiz C, Fernandez-Checa JC (2004) Glycosphingolipids and mitochondria: role in apoptosis and disease. Glycoconj J 20:579–588PubMedCrossRefGoogle Scholar
  27. 27.
    Lucki NC, Sewer MB (2012) Nuclear sphingolipid metabolism. Annu Rev Physiol 74:131–151PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781:424–434PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hannun YA, Bell RM (1987) Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science 235:670–674PubMedCrossRefGoogle Scholar
  30. 30.
    Breslow DK, Weissman JS (2010) Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 40:267–279PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Miyatake T, Suzuki K (1972) Globoid cell leukodystrophy: additional deficiency of psychosine galactosidase. Biochem Biophys Res Commun 48:539–543PubMedGoogle Scholar
  32. 32.
    Vanier MT, Svennerholm L (1975) Chemical pathology of Krabbe’s disease. III. Ceramide-hexosides and gangliosides of brain. Acta Paediatr Scand 64:641–648PubMedCrossRefGoogle Scholar
  33. 33.
    Im DS, Heise CE, Nguyen T, O’Dowd BF, Lynch KR (2001) Identification of a molecular target of psychosine and its role in globoid cell formation. J Cell Biol 153:429–434PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Radu CG, Cheng D, Nijagal A et al (2006) Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol 26:668–677PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wang JQ, Kon J, Mogi C et al (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 279:45626–45633PubMedCrossRefGoogle Scholar
  36. 36.
    Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264:19076–19080PubMedGoogle Scholar
  37. 37.
    Kolesnick RN (1989) Sphingomyelinase action inhibits phorbol ester-induced differentiation of human promyelocytic leukemic (HL-60) cells. J Biol Chem 264:7617–7623PubMedGoogle Scholar
  38. 38.
    Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128PubMedGoogle Scholar
  39. 39.
    Levade T, Jaffrezou JP (1999) Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1438:1–17PubMedCrossRefGoogle Scholar
  40. 40.
    Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414PubMedCrossRefGoogle Scholar
  41. 41.
    Park JW, Park WJ, Futerman AH (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta 1841:671–681PubMedCrossRefGoogle Scholar
  42. 42.
    Watanabe M, Kitano T, Kondo T et al (2004) Increase of nuclear ceramide through caspase-3-dependent regulation of the “sphingomyelin cycle” in Fas-induced apoptosis. Cancer Res 64:1000–1007PubMedCrossRefGoogle Scholar
  43. 43.
    Lafont E, Milhas D, Carpentier S et al (2010) Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ 17:642–654PubMedCrossRefGoogle Scholar
  44. 44.
    Bedia C, Casas J, Andrieu-Abadie N, Fabrias G, Levade T (2011) Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J Biol Chem 286:28200–28209PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Valaperta R, Chigorno V, Basso L et al (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229PubMedCrossRefGoogle Scholar
  46. 46.
    Sorli SC, Colie S, Albinet V et al (2013) The nonlysosomal beta-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB J 27:489–498PubMedCrossRefGoogle Scholar
  47. 47.
    Ghosh TK, Bian J, Gill DL (1990) Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 248:1653–1656PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114:155–167PubMedCrossRefGoogle Scholar
  49. 49.
    Auge N, Nikolova-Karakashian M, Carpentier S et al (1999) Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274:21533–21538PubMedCrossRefGoogle Scholar
  50. 50.
    Kumar A, Byun HS, Bittman R, Saba JD (2011) The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner. Cell Signal 23:1144–1152PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Chipuk JE, McStay GP, Bharti A et al (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Cuvillier O, Pirianov G, Kleuser B et al (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803PubMedCrossRefGoogle Scholar
  53. 53.
    Mesicek J, Lee H, Feldman T et al (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22:1300–1307PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560PubMedCrossRefGoogle Scholar
  55. 55.
    Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S (2010) Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 688:141–155PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Lee MJ, Van Brocklyn JR, Thangada S et al (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555PubMedCrossRefGoogle Scholar
  58. 58.
    Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Alvarez SE, Harikumar KB, Hait NC et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Hait NC, Allegood J, Maceyka M et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Strub GM, Paillard M, Liang J et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25:600–612PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Laviad EL, Albee L, Pankova-Kholmyansky I et al (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283:5677–5684PubMedCrossRefGoogle Scholar
  63. 63.
    Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261:12604–12609PubMedGoogle Scholar
  64. 64.
    Merrill AH Jr, Sereni AM, Stevens VL, Hannun YA, Bell RM, Kinkade JM Jr (1986) Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem 261:12610–12615PubMedGoogle Scholar
  65. 65.
    Wilson E, Olcott MC, Bell RM, Merrill AH Jr, Lambeth JD (1986) Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role of protein kinase C in activation of the burst. J Biol Chem 261:12616–12623PubMedGoogle Scholar
  66. 66.
    Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585:153–162PubMedCrossRefGoogle Scholar
  67. 67.
    Symolon H, Schmelz EM, Dillehay DL, Merrill AH Jr (2004) Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. J Nutr 134:1157–1161PubMedGoogle Scholar
  68. 68.
    Fyrst H, Oskouian B, Bandhuvula P et al (2009) Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis. Cancer Res 69:9457–9464PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Kumar A, Pandurangan AK, Lu F et al (2012) Chemopreventive sphingadienes downregulate Wnt signaling via a PP2A/Akt/GSK3beta pathway in colon cancer. Carcinogenesis 33:1726–1735PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Degagne E, Pandurangan A, Bandhuvula P et al (2014) Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. J Clin Invest 124:5368–5384PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Snook CF, Jones JA, Hannun YA (2006) Sphingolipid-binding proteins. Biochim Biophys Acta 1761:927–946PubMedCrossRefGoogle Scholar
  72. 72.
    Saddoughi SA, Ogretmen B (2013) Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res 117:37–58PubMedCrossRefGoogle Scholar
  73. 73.
    Young MM, Kester M, Wang HG (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54:5–19PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Garcia-Barros M, Coant N, Truman JP, Snider AJ, Hannun YA (2014) Sphingolipids in colon cancer. Biochim Biophys Acta 1841:773–782PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Huwiler A, Fabbro D, Pfeilschifter J (1998) Selective ceramide binding to protein kinase C-alpha and -delta isoenzymes in renal mesangial cells. Biochemistry 37:14556–14562PubMedCrossRefGoogle Scholar
  76. 76.
    Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280:26415–26424PubMedCrossRefGoogle Scholar
  77. 77.
    Yin X, Zafrullah M, Lee H, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2009) A ceramide-binding C1 domain mediates kinase suppressor of ras membrane translocation. Cell Physiol Biochem 24:219–230PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Mukhopadhyay A, Saddoughi SA, Song P et al (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23:751–763PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Edmond V, Dufour F, Poiroux G et al (2015) Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility. Oncogene 34:996–1005. doi: 10.1038/onc.2014.55
  80. 80.
    van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Goni FM, Alonso A (2006) Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758:1902–1921PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang Y, Li X, Becker KA, Gulbins E (2009) Ceramide-enriched membrane domains—structure and function. Biochim Biophys Acta 1788:178–183PubMedCrossRefGoogle Scholar
  83. 83.
    Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 99:10231–10233PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Fredman P, Hedberg K, Brezicka T (2003) Gangliosides as therapeutic targets for cancer. BioDrugs 17:155–167PubMedCrossRefGoogle Scholar
  85. 85.
    Furukawa K, Hamamura K, Aixinjueluo W, Furukawa K (2006) Biosignals modulated by tumor-associated carbohydrate antigens: novel targets for cancer therapy. Ann N Y Acad Sci 1086:185–198PubMedCrossRefGoogle Scholar
  86. 86.
    Handa K, Hakomori SI (2012) Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 29:627–637PubMedCrossRefGoogle Scholar
  87. 87.
    Giussani P, Tringali C, Riboni L, Viani P, Venerando B (2014) Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 15:4356–4392PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Hossain DM, Mohanty S, Ray P, Das T, Sa G (2012) Tumor gangliosides and T cells: a deadly encounter. Front Biosci (Schol Ed) 4:502–519CrossRefGoogle Scholar
  89. 89.
    Liu Y, Wondimu A, Yan S, Bobb D, Ladisch S (2013) Tumor gangliosides accelerate murine tumor angiogenesis. Angiogenesis 17:563–571. doi: 10.1007/s10456-013-9403-4 PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Avery K, Avery S, Shepherd J, Heath PR, Moore H (2008) Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells Dev 17:1195–1205PubMedCrossRefGoogle Scholar
  92. 92.
    Ader I, Malavaud B, Cuvillier O (2009) When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res 69:3723–3726PubMedCrossRefGoogle Scholar
  93. 93.
    Xia P, Gamble JR, Wang L et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10:1527–1530PubMedCrossRefGoogle Scholar
  94. 94.
    Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247PubMedCrossRefGoogle Scholar
  95. 95.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  96. 96.
    Moon SK, Kim HM, Lee YC, Kim CH (2004) Disialoganglioside (GD3) synthase gene expression suppresses vascular smooth muscle cell responses via the inhibition of ERK1/2 phosphorylation, cell cycle progression, and matrix metalloproteinase-9 expression. J Biol Chem 279:33063–33070PubMedCrossRefGoogle Scholar
  97. 97.
    Wang H, Isaji T, Satoh M, Li D, Arai Y, Gu J (2013) Antitumor effects of exogenous ganglioside GM3 on bladder cancer in an orthotopic cancer model. Urology 81(210):e211–215Google Scholar
  98. 98.
    Shirahama T, Sweeney EA, Sakakura C et al (1997) In vitro and in vivo induction of apoptosis by sphingosine and N, N-dimethylsphingosine in human epidermoid carcinoma KB-3-1 and its multidrug-resistant cells. Clin Cancer Res 3:257–264PubMedGoogle Scholar
  99. 99.
    Desai NN, Carlson RO, Mattie ME et al (1993) Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts. J Cell Biol 121:1385–1395PubMedCrossRefGoogle Scholar
  100. 100.
    Endo K, Igarashi Y, Nisar M, Zhou QH, Hakomori S (1991) Cell membrane signaling as target in cancer therapy: inhibitory effect of N,N-dimethyl and N,N,N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res 51:1613–1618PubMedGoogle Scholar
  101. 101.
    Webb TJ, Li X, Giuntoli RL 2nd et al (2012) Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res 72:3744–3752PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Zhou D (2006) The immunological function of iGb3. Curr Protein Pept Sci 7:325–333PubMedCrossRefGoogle Scholar
  103. 103.
    Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204:2641–2653PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Maru M, Haraguchi M, Higashi H et al (1993) Anti-tumor activity of ceramides and glycosphingolipids in a murine tumor system. Int J Cancer 53:645–650PubMedCrossRefGoogle Scholar
  105. 105.
    van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM (2010) Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J 12:171–180PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Parameswaran R, Lim M, Arutyunyan A et al (2013) O-acetylated N-acetylneuraminic acid as a novel target for therapy in human pre-B acute lymphoblastic leukemia. J Exp Med 210:805–819PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 271:19530–19536PubMedCrossRefGoogle Scholar
  108. 108.
    Ponnusamy S, Meyers-Needham M, Senkal CE et al (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Bocci G, Fioravanti A, Orlandi P et al (2012) Metronomic ceramide analogs inhibit angiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia 14:833–845PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Seyfried TN, Mukherjee P (2010) Ganglioside GM3 is antiangiogenic in malignant brain cancer. J Oncol 2010:961243PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238PubMedCrossRefGoogle Scholar
  112. 112.
    Cazet A, Groux-Degroote S, Teylaert B et al (2009) GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem 390:601–609PubMedCrossRefGoogle Scholar
  113. 113.
    Yan Q, Bach DQ, Gatla N et al (2013) Deacetylated GM3 promotes uPAR-associated membrane molecular complex to activate p38 MAPK in metastatic melanoma. Mol Cancer Res 11:665–675PubMedCrossRefGoogle Scholar
  114. 114.
    Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G (2014) The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets 18:95–107PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Takenaga M, Igarashi R, Matsumoto K et al (1999) Lipid microsphere preparation of a lipophilic ceramide derivative suppresses colony formation in a murine experimental pulmonary metastasis model. J Drug Target 7:187–195PubMedCrossRefGoogle Scholar
  116. 116.
    Beil M, Micoulet A, von Wichert G et al (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat Cell Biol 5:803–811PubMedCrossRefGoogle Scholar
  117. 117.
    Sadahira Y, Ruan F, Hakomori S, Igarashi Y (1992) Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A 89:9686–9690PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Birks SM, Danquah JO, King L, Vlasak R, Gorecki DC, Pilkington GJ (2011) Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma. Neuro Oncol 13:950–960PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Bennaceur K, Popa I, Chapman JA et al (2009) Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology 19:576–582PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771PubMedCrossRefGoogle Scholar
  121. 121.
    Kota V, Dhople VM, Fullbright G et al (2013) 2′-Hydroxy C16-ceramide induces apoptosis-associated proteomic changes in C6 glioma cells. J Proteome Res 12:4366–4375PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Sakakura C, Sweeney EA, Shirahama T, Hakomori S, Igarashi Y (1996) Suppression of bcl-2 gene expression by sphingosine in the apoptosis of human leukemic HL-60 cells during phorbol ester-induced terminal differentiation. FEBS Lett 379:177–180PubMedCrossRefGoogle Scholar
  123. 123.
    Bleicher RJ, Cabot MC (2002) Glucosylceramide synthase and apoptosis. Biochim Biophys Acta 1585:172–178PubMedCrossRefGoogle Scholar
  124. 124.
    Bektas M, Jolly PS, Muller C, Eberle J, Spiegel S, Geilen CC (2005) Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24:178–187PubMedCrossRefGoogle Scholar
  125. 125.
    Sauer B, Gonska H, Manggau M et al (2005) Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie 60:298–304PubMedGoogle Scholar
  126. 126.
    Li QF, Wu CT, Guo Q, Wang H, Wang LS (2008) Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem Biophys Res Commun 371:159–162PubMedCrossRefGoogle Scholar
  127. 127.
    Colie S, Van Veldhoven PP, Kedjouar B et al (2009) Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res 69:9346–9353PubMedCrossRefGoogle Scholar
  128. 128.
    Lee H, Deng J, Kujawski M et al (2010) STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 16:1421–1428PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Céline Colacios
    • 1
    • 2
  • Frédérique Sabourdy
    • 1
    • 2
    • 3
  • Nathalie Andrieu-Abadie
    • 1
    • 2
  • Bruno Ségui
    • 1
    • 2
  • Thierry Levade
    • 1
    • 2
    • 3
    Email author
  1. 1.Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037Centre de Recherches en Cancérologie de Toulouse (CRCT), Oncopole de ToulouseToulouse, Cedex 1France
  2. 2.Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT)Université Paul Sabatier Toulouse IIIToulouseFrance
  3. 3.Laboratoire de Biochimie Métabolique, Institut Fédératif de BiologieCHU PurpanToulouseFrance

Personalised recommendations