Skip to main content

Geometry in X-ray Testing

  • Chapter
  • First Online:
Computer Vision for X-Ray Testing
  • 1818 Accesses

Abstract

Geometry is of basic importance for understanding in X-ray testing. In this chapter, we present a mathematical background of the monocular and multiple view geometry which is normally used in X-ray computer vision systems. The chapter describes an explicit model which relates the 3D coordinates of an object to the 2D coordinates of the digital X-ray image pixel, the calibration problem, the geometric and algebraic constraints between two, three, and more X-ray images taken at different projections of the object, and the problem of 3D reconstruction from n views.

Cover image: Average of X-ray images of a wheel in motion (series C0008 colored with “parula” colormap).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although industrial X-ray generators use standard tubes with larger focal size that blur the X-ray images slightly, the assumption that the X-ray source can be modeled as a point is valid for geometrical measurements. This is because the position of a point in the X-ray image can still be estimated as the center of the blurred point [5].

  2. 2.

    The reader should note that at this moment there are two retinal planes: \(\varPi \) for the central projection and \(\Phi \) for the image intensifier.

  3. 3.

    The reader should note that \(\Gamma \), the retinal plane of the CCD camera, is the third retinal plane of our model (see footnote 2).

  4. 4.

    Nevertheless, in Sect. 8.4.3 the reader can find an interesting X-ray testing application where the 3D model is estimated using a self-calibration method based on bundle adjustment.

  5. 5.

    Image intensifier developed by YXLON International Inc.

  6. 6.

    This is a gradient method that uses the Broyden–Fletcher–Goldfarb–Shanno formula for updating the approximation of the Hessian matrix iteratively, which reduces the computational cost of the minimization.

  7. 7.

    The word epipole comes from the Greek \(\grave{\epsilon } \pi \iota \) (epi): over and \(\pi \acute{o} \lambda o \varsigma \) (polos): attractor.

References

  1. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, Cambridge (1993)

    Google Scholar 

  2. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  3. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Trans. Robot. Autom. RA-3(4), 323–344 (1987)

    Google Scholar 

  4. Wei, G.Q., Ma, S.: Implicit and explicit camera calibration: theory and experiments. IEEE Trans. Pattern Anal Mach. Intell. 16(5), 469–480 (1994)

    Article  Google Scholar 

  5. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 4(10), 965–980 (1992)

    Article  Google Scholar 

  6. Faugeras, O., Toscani, G.: The calibration problem for stereo. In: Proceedings IEEE Computer Vision and Pattern Recognition, pp. 15–20 (1986)

    Google Scholar 

  7. Heikkilä, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000)

    Article  Google Scholar 

  8. Swaminathan, R., Nayar, S.: Nonmetric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell 22(10), 1172–1178 (2000)

    Article  Google Scholar 

  9. Jaeger, T.: Methods for rectification of geometric distortion in radioscopic images. Master theses, Institute for Measurement and Automation, Faculty of Electrical Engineering, Technical University of Berlin (1990) (in German)

    Google Scholar 

  10. Brack, C., Götte, H., Gossé, F., Moctezuma, J., Roth, M., Schweikard, A.: Towards accurate X-ray-camera calibration in computer-assisted robotic surgery. In: Proceedings of the International Symposium Computer Assisted Radiology (CAR), pp. 721–728. Paris (1996)

    Google Scholar 

  11. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901 (2002)

    Article  Google Scholar 

  12. Mery, D., Filbert, D.: The epipolar geometry in the radioscopy: theory and application. at - Automatisierungstechnik 48(12), 588–596 (2000) (in German)

    Google Scholar 

  13. Felix, R., Ramm, B.: Das Röntgenbild, 3rd edn. Georg Thieme Verlag, Stuttgart (1988)

    Google Scholar 

  14. Mery, D.: Explicit geometric model of a radioscopic imaging system. NDT & E Int. 36(8), 587–599 (2003)

    Article  Google Scholar 

  15. Halmshaw, R.: Non-Destructive-Testing, 2nd edn. Edward Arnold, London (1991)

    Google Scholar 

  16. Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view x-ray images. Pattern Recognit. 144–154 (2012)

    Google Scholar 

  17. Grignon, B., Mainard, L., Delion, M., Hodez, C., Oldrini, G.: Recent advances in medical imaging: anatomical and clinical applications. Surg. Radiol. Anat. 34(8), 675–686 (2012)

    Article  MATH  Google Scholar 

  18. Mery, D.: Automated Flaw Detection in Castings from Digital Radioscopic Image Sequences. Verlag Dr. Köster, Berlin (2001). Ph.D. thesis in German

    Google Scholar 

  19. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  20. Luong, Q.T., Faugeras, O.: Self calibration of a moving camera from point correspondences and fundamental matrices. Int. J. Comput. Vis. 22(3), 261–289 (1997)

    Article  Google Scholar 

  21. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  22. MathWorks: Computer Vision Toolbox for Use with MATLAB: User’s Guide. The MathWorks Inc. (2014)

    Google Scholar 

  23. MathWorks: Optimization Toolbox for Use with MATLAB: User’s Guide. The MathWorks Inc. (2014)

    Google Scholar 

  24. Faugeras, O., Luong, Q.T., Papadopoulo, T.: The Geometry of Multiple Images: The Laws that Govern the Formation of Multiple Images of a Scene and Some of Their Applications. The MIT Press, Cambridge (2001)

    Google Scholar 

  25. Hartley, R.: Multilinear relationships between coordinates of corresponding image points and lines. In: Proceedings of the International Workshop on Computer Vision and Applied Geometry. International Sophus Lie Center, Nordfjordeid, Norway (1995)

    Google Scholar 

  26. Heyden, A.: A common framework for multiple view tensors. In: 5th European Conference on Computer Vision (ECCV-98), pp. 3–19 (1998)

    Google Scholar 

  27. Hartley, R.: A linear method for reconstruction from lines and points. In: 5th International Conference on Computer Vision (ICCV-95), pp. 882–887. Cambridge (1995)

    Google Scholar 

  28. Hartley, R.: Lines and points in three views and the trifocal tensor. Int. J. Comput. Vis. 22(2), 125–150 (1997)

    Article  Google Scholar 

  29. Faugeras, O., Papadopulo, T.: A nonlinear method for estimating the projective geometry of 3 views. In: 6th International Conference on Computer Vision (ICCV-98), pp. 477–484. Bombay, India (1998)

    Google Scholar 

  30. Heyden, A.: Multiple view geometry using multifocal tensors. In: DSAGM. Köpenhamn (1999)

    Google Scholar 

  31. Shashua, A., Werman, M.: Trilinearity of three perspective views and its associated tensor. In: 5th International Conference on Computer Vision (ICCV-95). Boston (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Mery .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mery, D. (2015). Geometry in X-ray Testing. In: Computer Vision for X-Ray Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-20747-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20747-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20746-9

  • Online ISBN: 978-3-319-20747-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics