Skip to main content

Microfluidic Platforms for the Interrogation of Intravascular Cellular Trafficking Mechanisms Influenced by Hemodynamic Forces

  • Chapter
Microscale Technologies for Cell Engineering

Abstract

Cell homing within the vasculature regulates the dissemination of circulating cells to distant target tissues. As such, these processes are intimately involved in the physiologic regulation of oxygen delivery and immunity as well as in the pathologic processes of wound healing and cancer metastasis. Mechanisms regulating intravascular cell homing include vessel preferences of cells at microvascular bifurcations, aggregation of erythrocytes and margination of leukocytes, and adhesion of circulating cells to the endothelium. Each is uniquely modulated by mechanical fluidic effects and by geometrical features of the vasculature. Model fluidic systems have been widely employed in the study of intravascular cell homing through the implementation of advanced fabrication techniques to allow both highly realistic and highly controlled microfluidic environments for the elucidation of contributing biological and mechanical factors. In particular, realistic microvascular architectures, endothelialized substrates, artificially functionalized substrates with very precise properties, and conduits with highly controlled shear stress profiles have been constructed to interrogate microvascular cell homing processes. Furthermore, methods have also been developed to harness partition, margination, and adhesion effects in order to allow enrichment or separation of specific cell types, purification of plasma, and detection of abnormal or diseased cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ICAM:

Intercellular adhesion molecule

IFN:

Interferon

IL:

Interleukin

PDMS:

Polydimethylsiloxane

sLex :

sialyl Lewis x

TNF:

Tumor necrosis factor

References

  1. Pries AR, Fritzsche A, Ley K et al (1992) Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circ Res 70:1113–1121

    Google Scholar 

  2. Kindig CA, Richardson TE, Poole DC (2002) Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer. J Appl Physiol (1985) 92:2513–2520

    Google Scholar 

  3. Ley K, Pries AR, Gaehtgens P (1988) Preferential distribution of leukocytes in rat mesentery microvessel networks. Pflugers Arch 412:93–100

    Google Scholar 

  4. Chien S, Tvetenstrand CD, Epstein MA et al (1985) Model studies on distributions of blood cells at microvascular bifurcations. Am J Physiol 248:H568–H576

    Google Scholar 

  5. Miles FL, Pruitt FL, van Golen KL et al (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305–324

    Google Scholar 

  6. Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112:1–23

    Google Scholar 

  7. Pries AR, Ley K, Claassen M et al (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38:81–101

    Google Scholar 

  8. Ellis CG, Wrigley SM, Groom AC (1994) Heterogeneity of red blood cell perfusion in capillary networks supplied by a single arteriole in resting skeletal muscle. Circ Res 75:357–368

    Google Scholar 

  9. Duling BR, Damon DH (1987) An examination of the measurement of flow heterogeneity in striated muscle. Circ Res 60:1–13

    Google Scholar 

  10. Pries AR, Secomb TW, Gaehtgens P (1995) Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am J Physiol 269:H1713–H1722

    Google Scholar 

  11. Damon DH, Duling BR (1987) Are physiological changes in capillary tube hematocrit related to alterations in capillary perfusion heterogeneity? Int J Microcirc Clin Exp 6:309–319

    Google Scholar 

  12. Firrell JC, Lipowsky HH (1989) Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol 256:H1667–H1674

    Google Scholar 

  13. Nash GB, Watts T, Thornton C et al (2008) Red cell aggregation as a factor influencing margination and adhesion of leukocytes and platelets. Clin Hemorheol Microcirc 39:303–310

    Google Scholar 

  14. Cabrales P, Vazquez BY, Tsai AG et al (2007) Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol 1985 102:2251–2259

    Google Scholar 

  15. Nieuwdorp M, Mooij HL, Kroon J et al (2006) Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55:1127–1132

    Google Scholar 

  16. Vlahu CA, Lemkes BA, Struijk DG et al (2012) Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol 23:1900–1908

    Google Scholar 

  17. Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 237:H481–H490

    Google Scholar 

  18. House SD, Lipowsky HH (1987) Microvascular hematocrit and red cell flux in rat cremaster muscle. Am J Physiol 252:H211–H222

    Google Scholar 

  19. Lipowsky HH, Usami S, Chien S (1980) In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc Res 19:297–319

    Google Scholar 

  20. Barbee JH, Cokelet GR (1971) The Fahraeus effect. Microvasc Res 3:6–16

    Google Scholar 

  21. Eskens BJ, Mooij HL, Cleutjens JP et al (2013) Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats. PLoS One 8, e55399

    Google Scholar 

  22. Secomb TW, Hsu R, Pries AR (1998) A model for red blood cell motion in glycocalyx-lined capillaries. Am J Physiol 274:H1016–H1022

    Google Scholar 

  23. Kanzow G, Pries AR, Gaehtgens P (1982) Analysis of the hematocrit distribution in the mesenteric microcirculation. Int J Microcirc Clin Exp 1:67–79

    Google Scholar 

  24. Pries AR, Ley K, Gaehtgens P (1986) Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 251:H1324–H1332

    Google Scholar 

  25. Bugliarello G, Hsiao GC (1964) Phase separation in suspensions flowing through bifurcations: a simplified hemodynamic model. Science 143:469–471

    Google Scholar 

  26. Pries AR, Secomb TW, Gaehtgens P et al (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67:826–834

    Google Scholar 

  27. Klitzman B, Johnson PC (1982) Capillary network geometry and red cell distribution in hamster cremaster muscle. Am J Physiol 242:H211–H219

    Google Scholar 

  28. Schmid-Schonbein GW, Skalak R, Usami S et al (1980) Cell distribution in capillary networks. Microvasc Res 19:18–44

    Google Scholar 

  29. Johnson PC (1971) Red cell separation in the mesenteric capillary network. Am J Physiol 221:99–104

    Google Scholar 

  30. Dong C, Cao J, Struble EJ et al (1999) Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng 27:298–312

    Google Scholar 

  31. Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20 to 100 micrometers bifurcations. Microvasc Res 29:103–126

    Google Scholar 

  32. Carr RT, Wickham LL (1991) Influence of vessel diameter on red cell distribution at microvascular bifurcations. Microvasc Res 41:184–196

    Google Scholar 

  33. Sweeney TE, Sarelius IH (1989) Arteriolar control of capillary cell flow in striated muscle. Circ Res 64:112–120

    Google Scholar 

  34. Frame MD, Sarelius IH (1993) Regulation of capillary perfusion by small arterioles is spatially organized. Circ Res 73:155–163

    Google Scholar 

  35. Segal SS, Jacobs TL (2001) Role for endothelial cell conduction in ascending vasodilatation and exercise hyperaemia in hamster skeletal muscle. J Physiol 536:937–946

    Google Scholar 

  36. Davis MJ (1993) Myogenic response gradient in an arteriolar network. Am J Physiol 264:H2168–H2179

    Google Scholar 

  37. Brands J, van Haare J, Vink H et al (2013) Whole-body recruitment of glycocalyx volume during intravenous adenosine infusion. Physiol Rep 1, e00102

    Google Scholar 

  38. Sriram K, Intaglietta M, Tartakovsky DM (2014) Hematocrit dispersion in asymmetrically bifurcating vascular networks. Am J Physiol Heart Circ Physiol 307:H1576–H1586

    Google Scholar 

  39. Jäggi RD, Sandoz R, Effenhauser CS (2007) Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid 3:47–53

    Google Scholar 

  40. Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880

    Google Scholar 

  41. Shevkoplyas SS, Yoshida T, Munn LL et al (2005) Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem 77:933–937

    Google Scholar 

  42. Zheng S, Liu J-Q, Tai Y-C (2008) Streamline-based microfluidic devices for erythrocytes and leukocytes separation. J Microelectromech Syst 17:1029–1038

    Google Scholar 

  43. Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9:694–710

    Google Scholar 

  44. Shen S, Ma C, Zhao L et al (2014) High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics. Lab Chip 14:2525–2538

    Google Scholar 

  45. Camp JP, Stokol T, Shuler ML (2008) Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching. Biomed Microdevices 10:179–186

    Google Scholar 

  46. Fiddes LK, Raz N, Srigunapalan S et al (2010) A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31:3459–3464

    Google Scholar 

  47. Rosano JM, Tousi N, Scott RC et al (2009) A physiologically realistic in vitro model of microvascular networks. Biomed Microdevices 11:1051–1057

    Google Scholar 

  48. Prabhakarpandian B, Pant K, Scott RC et al (2008) Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomed Microdevices 10:585–595

    Google Scholar 

  49. Nasr-El-Din H, Shook C (1986) Particle segregation in slurry flow through vertical tees. Int J Multiphase Flow 12:427–443

    Google Scholar 

  50. Palmer AA (1965) Axial drift of cells and partial plasma skimming in blood flowing through glass slits. Am J Physiol 209:1115–1122

    Google Scholar 

  51. Gaehtgens P, Pries A, Albrecht KH (1979) Model experiments on the effect of bifurcations on capillary blood flow and oxygen transport. Pflugers Arch 380:115–120

    Google Scholar 

  52. Dellimore JW, Dunlop MJ, Canham PB (1983) Ratio of cells and plasma in blood flowing past branches in small plastic channels. Am J Physiol 244:H635–H643

    Google Scholar 

  53. Barber JO, Alberding JP, Restrepo JM et al (2008) Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann Biomed Eng 36:1690–1698

    Google Scholar 

  54. Secomb TW, Styp-Rekowska B, Pries AR (2007) Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann Biomed Eng 35:755–765

    Google Scholar 

  55. Xiong W, Zhang J (2012) Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects. Biomech Model Mechanobiol 11:575–583

    MathSciNet  Google Scholar 

  56. Li X, Popel AS, Karniadakis GE (2012) Blood-plasma separation in y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys Biol 9:026010

    Google Scholar 

  57. Yin X, Thomas T, Zhang J (2013) Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Microvasc Res 89:47–56

    Google Scholar 

  58. Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol 275:H349–H360

    Google Scholar 

  59. Ritter LS, Orozco JA, Coull BM et al (2000) Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 31:1153–1161

    Google Scholar 

  60. Sumagin R, Lamkin-Kennard KA, Sarelius IH (2009) A separate role for ICAM-1 and fluid shear in regulating leukocyte interactions with straight regions of venular wall and venular convergences. Microcirculation 16:508–520

    Google Scholar 

  61. Tousi N, Wang B, Pant K et al (2010) Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvasc Res 80:384–388

    Google Scholar 

  62. Lamberti G, Tang Y, Prabhakarpandian B et al (2013) Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Microvasc Res 89:107–114

    Google Scholar 

  63. Prabhakarpandian B, Wang Y, Rea-Ramsey A et al (2011) Bifurcations: focal points of particle adhesion in microvascular networks. Microcirculation 18:380–389

    Google Scholar 

  64. Richter Y, Groothuis A, Seifert P et al (2004) Dynamic flow alterations dictate leukocyte adhesion and response to endovascular interventions. J Clin Invest 113:1607–1614

    Google Scholar 

  65. Cicha I, Beronov K, Ramirez EL et al (2009) Shear stress preconditioning modulates endothelial susceptibility to circulating TNF-alpha and monocytic cell recruitment in a simplified model of arterial bifurcations. Atherosclerosis 207:93–102

    Google Scholar 

  66. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85:9–23

    Google Scholar 

  67. Jerome WG, Lewis JC (1984) Early atherogenesis in white carneau pigeons. I. Leukocyte margination and endothelial alterations at the celiac bifurcation. Am J Pathol 116:56–68

    Google Scholar 

  68. Forouzan O, Burns JM, Robichaux JL et al (2011) Passive recruitment of circulating leukocytes into capillary sprouts from existing capillaries in a microfluidic system. Lab Chip 11:1924–1932

    Google Scholar 

  69. Gimbrone MA Jr, Cotran RS, Leapman SB et al (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52:413–427

    Google Scholar 

  70. Schmid-Schonbein GW, Usami S, Skalak R et al (1980) The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res 19:45–70

    Google Scholar 

  71. Forouzan O, Yang X, Sosa JM et al (2012) Spontaneous oscillations of capillary blood flow in artificial microvascular networks. Microvasc Res 84:123–132

    Google Scholar 

  72. Johnson PC, Wayland H (1967) Oscillatory flow patterns in single mesenteric capillaries. Bibl Anat 9:164–168

    Google Scholar 

  73. Tsuda A, Turhan A, Konerding M et al (2009) Bimodal oscillation frequencies of blood flow in the inflammatory colon microcirculation. Anat Rec (Hoboken) 292:65–72

    Google Scholar 

  74. Turhan A, Konerding MA, Tsuda A et al (2008) Bridging mucosal vessels associated with rhythmically oscillating blood flow in murine colitis. Anat Rec (Hoboken) 291:74–82

    Google Scholar 

  75. Kiani MF, Pries AR, Hsu LL et al (1994) Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am J Physiol 266:H1822–H1828

    Google Scholar 

  76. Jain A, Munn LL (2009) Determinants of leukocyte margination in rectangular microchannels. PLoS One 4, e7104

    Google Scholar 

  77. Carugo D, Capretto L, Nehru E et al (2013) A microfluidic-based arteriolar network model for biophysical and bioanalytical investigations. Curr Anal Chem 9:47–59

    Google Scholar 

  78. Wang J-C, Tu Q, Wang Y et al (2013) Pneumatic mold-aided construction of a three-dimensional hydrogel microvascular network in an integrated microfluidics and assay of cancer cell adhesion onto the endothelium. Microfluid Nanofluid 15:519–532

    Google Scholar 

  79. Myers DR, Sakurai Y, Tran R et al (2012) Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J Vis Exp 64:3958

    Google Scholar 

  80. Tomaiuolo G, Barra M, Preziosi V et al (2011) Microfluidics analysis of red blood cell membrane viscoelasticity. Lab Chip 11:449–454

    Google Scholar 

  81. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J et al (2005) Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309

    Google Scholar 

  82. Shevkoplyas SS, Yoshida T, Gifford SC et al (2006) Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device. Lab Chip 6:914–920

    Google Scholar 

  83. Huang JH, Kim J, Agrawal N et al (2009) Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv Mater 21:3567–3571

    Google Scholar 

  84. Huo Y, Kassab GS (2012) Intraspecific scaling laws of vascular trees. J R Soc Interface 9:190–200

    Google Scholar 

  85. Zamir M (2001) Arterial branching within the confines of fractal l-system formalism. J Gen Physiol 118:267–276

    Google Scholar 

  86. Hou HW, Bhagat AA, Chong AG et al (2010) Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613

    Google Scholar 

  87. Gonzalez-Amaro R, Sanchez-Madrid F (1999) Cell adhesion molecules: selectins and integrins. Crit Rev Immunol 19:41

    Google Scholar 

  88. von Andrian UH, Chambers JD, McEvoy LM et al (1991) Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U S A 88:7538–7542

    Google Scholar 

  89. Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Google Scholar 

  90. Konstantopoulos K, Neelamegham S, Burns AR et al (1998) Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via p-selectin and beta2-integrin. Circulation 98:873–882

    Google Scholar 

  91. Ahn KC, Jun AJ, Pawar P et al (2005) Preferential binding of platelets to monocytes over neutrophils under flow. Biochem Biophys Res Commun 329:345–355

    Google Scholar 

  92. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134

    Google Scholar 

  93. Burdick MM, Konstantopoulos K (2004) Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. Am J Physiol Cell Physiol 287:C539–C547

    Google Scholar 

  94. Konstantopoulos K, Thomas SN (2009) Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11:177–202

    Google Scholar 

  95. Kneuer C, Ehrhardt C, Radomski MW et al (2006) Selectins—potential pharmacological targets? Drug Discov Today 11:1034–1040

    Google Scholar 

  96. Renkonen J, Tynninen O, Hayry P et al (2002) Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am J Pathol 161:543–550

    Google Scholar 

  97. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042

    Google Scholar 

  98. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522

    Google Scholar 

  99. Dong C, Lei XX (2000) Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J Biomech 33:35–43

    Google Scholar 

  100. Zhu C, Yago T, Lou J et al (2008) Mechanisms for flow-enhanced cell adhesion. Ann Biomed Eng 36:604–621

    Google Scholar 

  101. Yago T, Wu J, Wey CD et al (2004) Catch bonds govern adhesion through l-selectin at threshold shear. J Cell Biol 166:913–923

    Google Scholar 

  102. Lawrence MB, Kansas GS, Kunkel EJ et al (1997) Threshold levels of fluid shear promote leukocyte adhesion through selectins (cd62l, p, e). J Cell Biol 136:717–727

    Google Scholar 

  103. Alon R, Chen S, Puri KD et al (1997) The kinetics of l-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol 138:1169–1180

    Google Scholar 

  104. Chen S, Springer TA (2001) Selectin receptor-ligand bonds: formation limited by shear rate and dissociation governed by the bell model. Proc Natl Acad Sci U S A 98:950–955

    Google Scholar 

  105. Lu H, Koo LY, Wang WM et al (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76:5257–5264

    Google Scholar 

  106. Edwards BS, Curry MS, Tsuji H et al (2000) Expression of p-selectin at low site density promotes selective attachment of eosinophils over neutrophils. J Immunol 165:404–410

    Google Scholar 

  107. MacDonald IC, Groom AC, Chambers AF (2002) Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24:885–893

    Google Scholar 

  108. Rupprecht P, Gole L, Rieu JP et al (2012) A tapered channel microfluidic device for comprehensive cell adhesion analysis, using measurements of detachment kinetics and shear stress-dependent motion. Biomicrofluidics 6:14107–1410712

    Google Scholar 

  109. Gutierrez E, Petrich BG, Shattil SJ et al (2008) Microfluidic devices for studies of shear-dependent platelet adhesion. Lab Chip 8:1486–1495

    Google Scholar 

  110. Chau L, Doran M, Cooper-White J (2009) A novel multishear microdevice for studying cell mechanics. Lab Chip 9:1897–1902

    Google Scholar 

  111. Bianchi E, Molteni R, Pardi R et al (2013) Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays. J Biomech 46:276–283

    Google Scholar 

  112. Schaff UY, Xing MM, Lin KK et al (2007) Vascular mimetics based on microfluidics for imaging the leukocyte—endothelial inflammatory response. Lab Chip 7:448–456

    Google Scholar 

  113. Green JV, Kniazeva T, Abedi M et al (2009) Effect of channel geometry on cell adhesion in microfluidic devices. Lab Chip 9:677–685

    Google Scholar 

  114. Brunk DK, Hammer DA (1997) Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J 72:2820–2833

    Google Scholar 

  115. Yago T, Leppanen A, Qiu H et al (2002) Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. J Cell Biol 158:787–799

    Google Scholar 

  116. Burns AR, Bowden RA, Abe Y et al (1999) P-selectin mediates neutrophil adhesion to endothelial cell borders. J Leukoc Biol 65:299–306

    Google Scholar 

  117. Hattori R, Hamilton KK, Fugate RD et al (1989) Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem 264:7768–7771

    Google Scholar 

  118. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71:185–196

    Google Scholar 

  119. Song JW, Cavnar SP, Walker AC et al (2009) Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4, e5756

    Google Scholar 

  120. Zervantonakis IK, Hughes-Alford SK, Charest JL et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109:13515–13520

    Google Scholar 

  121. Thomas SN, Tong Z, Stebe KJ et al (2009) Identification, characterization and utilization of tumor cell selectin ligands in the design of colon cancer diagnostics. Biorheology 46:207–225

    Google Scholar 

  122. Barthel SR, Gavino JD, Descheny L et al (2007) Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11:1473–1491

    Google Scholar 

  123. Hanley WD, Napier SL, Burdick MM et al (2006) Variant isoforms of cd44 are p- and l-selectin ligands on colon carcinoma cells. FASEB J 20:337–339

    Google Scholar 

  124. Napier SL, Healy ZR, Schnaar RL et al (2007) Selectin ligand expression regulates the initial vascular interactions of colon carcinoma cells: the roles of cd44v and alternative sialofucosylated selectin ligands. J Biol Chem 282:3433–3441

    Google Scholar 

  125. Thomas SN, Zhu F, Schnaar RL et al (2008) Carcinoembryonic antigen and cd44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to e- and l-selectin in shear flow. J Biol Chem 283:15647–15655

    Google Scholar 

  126. Alves CS, Burdick MM, Thomas SN et al (2008) The dual role of cd44 as a functional p-selectin ligand and fibrin receptor in colon carcinoma cell adhesion. Am J Physiol Cell Physiol 294:C907–C916

    Google Scholar 

  127. Thomas SN, Schnaar RL, Konstantopoulos K (2009) Podocalyxin-like protein is an e-/l-selectin ligand on colon carcinoma cells: comparative biochemical properties of selectin ligands in host and tumor cells. Am J Physiol Cell Physiol 296:C505–C513

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan N. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McClatchey, P.M., Hannen, E., Thomas, S.N. (2016). Microfluidic Platforms for the Interrogation of Intravascular Cellular Trafficking Mechanisms Influenced by Hemodynamic Forces. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics