Skip to main content

Spatial Patterning of Stem Cells to Engineer Microvascular Networks

  • Chapter
Microscale Technologies for Cell Engineering

Abstract

A critical step in successful engraftment of engineered tissue substitutes is the development of functional vascularized networks. Vascularization of complex tissue constructs requires a combination of expertise in biological science, engineering, and biomaterials synthesis. Microengineering technology has found extensive applications in creating spatially patterned features with well-defined chemical and physical cues to control cell and tissue functions. In this chapter, we will broadly overview the recent progress in the integration of microengineering technology (e.g., spatial patterning techniques) and stem cells to develop microvascular networks. We will primarily describe the characteristics and architecture of native blood vessels followed by a brief presentation on specific cell types, biological signals, and biomaterials, which have been applied to create biomimetic vascular networks. We will then highlight the studies, which have utilized photolithography, soft lithography, and advanced biomanufacturing techniques to spatially pattern stem cells to generate blood vessel-like networks. This chapter will be concluded with a brief summary on the effects of mechanical stimulations on vascular assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

ASCs:

Adipose-derived stem cells

bFGF:

Basic fibroblast growth factor

b-TCP:

b-Tricalcium phosphate

CACs:

Circulating angiogenic cells

ECFCs:

Endothelial colony forming cells

ECM:

Extracellular matrix

ECs:

Endothelial cells

EGF:

Epidermal growth factor

EPCs:

Endothelial progenitor cells

ESCs:

Embryonic stem cells

HA:

Hyaluronic acid

hfMSCs:

Human fetal MSCs

HGF:

Hepatocyte growth factor

HUVECs:

Human umbilical vein endothelial cells

IGF-1:

Insulin-like growth factor

IPC:

Interfacial polyelectrolyte complexion

MMP:

Matrix metalloproteinase

MPCs:

Mesenchymal progenitor cells

MSCs:

Mesenchymal stem cells

PB-MNCs:

Peripheral blood–mononuclear cells

PDGF:

Platelet-derived growth factor

PDMS:

Polydimethylsiloxane

PEG:

Polyethylene glycol

PEGDA:

Polyethylene (glycol) diacrylate

PEUU:

Polyester urethane urea

PGS:

Polyglycerol sebacate

PLA:

Poly l-lactic acid

PLGA:

Poly(lactic-co-glycolic acid)

PSCs:

Pluripotent stem cells

RMC:

Rat methylated collagen

SMCs:

Smooth muscle cells

UCB-EPC:

Umbilical-cord-blood endothelial progenitor cells

VEGF:

Vascular endothelial growth factor

VSMCs:

Vascular smooth muscle cells

μCP:

Microcontact printing

References

  1. Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64

    Google Scholar 

  2. Atala A (2004) Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res 7:15–31

    Google Scholar 

  3. Arthur WT, Vernon RB, Sage EH, Reed MJ (1998) Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvasc Res 55:260–270

    Google Scholar 

  4. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

    Google Scholar 

  5. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Google Scholar 

  6. Jain RK, Au P, Tam J, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23:821–823

    Google Scholar 

  7. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11:768–774

    Google Scholar 

  8. Malda J, Van den Brink P, Meeuwse P, Grojec M, Martens DE, Tramper J et al (2004) Effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture. Tissue Eng 10:987–994

    Google Scholar 

  9. Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S et al (2014) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35:7308–7325

    Google Scholar 

  10. Papavasiliou G, Cheng M-H, Brey EM (2010) Strategies for vascularization of polymer scaffolds. J Invest Med 58:838–844

    Google Scholar 

  11. Mosadegh B, Huang C, Park JW, Shin HS, Chung BG, Hwang S-K et al (2007) Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23:10910–10912

    Google Scholar 

  12. Vickerman V, Blundo J, Chung S, Kamm R (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8:1468–1477

    Google Scholar 

  13. Jiang B, Waller TM, Larson JC, Appel AA, Brey EM (2013) Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng Part A 19:224–234

    Google Scholar 

  14. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33:5230–5246

    Google Scholar 

  15. Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL (2009) Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng Part A 15:579–585

    Google Scholar 

  16. Wenger A, Kowalewski N, Stahl A, Mehlhorn AT, Schmal H, Stark GB et al (2005) Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs 181:80–88

    Google Scholar 

  17. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15:353–370

    Google Scholar 

  18. Sorensen ML (2008) Stem cell applications in diseases. Nova Biomedical Books, New York, NY

    Google Scholar 

  19. Valarmathi MT, Davis JM, Yost MJ, Goodwin RL, Potts JD (2009) A three-dimensional model of vasculogenesis. Biomaterials 30:1098–1112

    Google Scholar 

  20. Gallagher PJ (1997) Blood vessels. In: Sternberg SS (ed) Histology for pathologists, 2nd edn. Lippincott-Raven, New York, NY, pp 195–213

    Google Scholar 

  21. Davis GE, Senger DR (2005) Endothelial extracellular matrix—biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Google Scholar 

  22. Ratcliffe A (2000) Tissue engineering of vascular grafts. Matrix Biol 19:353–357

    Google Scholar 

  23. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Google Scholar 

  24. Archipoff G, Beretz A, Bartha K, Brisson C, Delasalle C, Frogetleon C et al (1993) Role of cyclic-amp in promoting the thromboresistance of human endothelial-cells by enhancing thrombomodulin and decreasing tissue factor activities. Br J Pharmacol 109:18–28

    Google Scholar 

  25. Stegemann JP, Kaszuba SN, Rowe SL (2007) Review: Advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13:2601–2613

    Google Scholar 

  26. Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21:441–463

    MATH  Google Scholar 

  27. Garmy-Susini B, Jin H, Zhu YH, Sung RJ, Hwang R, Varner J (2005) Integrin alpha(4)beta(1)-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest 115:1542–1551

    Google Scholar 

  28. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Google Scholar 

  29. Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr, Daum G (2011) The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 31:1530–1539

    Google Scholar 

  30. Heydarkhan-Hagvall S, Esguerra M, Helenius G, Soderberg R, Johansson BR, Risberg B (2006) Production of extracellular matrix components in tissue-engineered blood vessels. Tissue Eng 12:831–842

    Google Scholar 

  31. Fung YC, Liu SQ (1995) Determination of the mechanical-properties of the different layers of blood-vessels in-vivo. Proc Natl Acad Sci U S A 92:2169–2173

    Google Scholar 

  32. Hendrix MJC, Seftor EA, Hess AR, Seftor REB (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421

    Google Scholar 

  33. Moon JJ, West JL (2008) Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem 8:300–310

    Google Scholar 

  34. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Google Scholar 

  35. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Google Scholar 

  36. Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB et al (2004) Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng 10:1536–1547

    Google Scholar 

  37. Brey EM, Uriel S, Greisler HP, Patrick CW, McIntire LV (2005) Therapeutic neovascularization: contributions from bioengineering. Tissue Eng 11:567–584

    Google Scholar 

  38. Nerem RM, Ensley AE (2004) The tissue engineering of blood vessels and the heart. Am J Transplant 4:36–42

    Google Scholar 

  39. Weinberg CB, Bell E (1986) A blood-vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Google Scholar 

  40. Kim S, von Recum HA (2010) Endothelial progenitor populations in differentiating embryonic stem cells. II. Drug selection and functional characterization. Tissue Eng Part A 16:1065–1074

    Google Scholar 

  41. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK (2004) Creation of long-lasting blood vessels. Nature 428:138–139

    Google Scholar 

  42. Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H et al (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25:317–318

    Google Scholar 

  43. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Google Scholar 

  44. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Google Scholar 

  45. Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Google Scholar 

  46. Finkenzeller G, Torio-Padron N, Momeni A, Mehlhorn AT, Stark GB (2007) In vitro angiogenesis properties of endothelial progenitor cells: a promising tool for vascularization of ex vivo engineered tissues. Tissue Eng 13:1413–1420

    Google Scholar 

  47. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Google Scholar 

  48. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422–3427

    Google Scholar 

  49. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    Google Scholar 

  50. Lin Y, Weisdorf D, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    Google Scholar 

  51. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768

    Google Scholar 

  52. Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L, Oettgen P et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202

    Google Scholar 

  53. Melchiorri AJ, Nguyen B-NB, Fisher JP (2014) Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng Part B Rev 20:218–228

    Google Scholar 

  54. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Google Scholar 

  55. Pittenger MF, Mosca JD, McIntosh KR (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. In: Melchers F (ed) Lymphoid organogenesis, vol 251. Springer, Berlin, pp 3–11

    Google Scholar 

  56. Boyd NL, Nunes SS, Jokinen JD, Krishnan L, Chen Y, Smith KH et al (2011) Microvascular mural cell functionality of human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A 17:1537–1548

    Google Scholar 

  57. Zhou J, Lin H, Fang T, Li X, Dai W, Uemura T et al (2010) The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials 31:1171–1179

    Google Scholar 

  58. Villars F, Bordenave L, Bareille R, Amedee J (2000) Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem 79:672–685

    Google Scholar 

  59. Kolbe M, Xiang Z, Dohle E, Tonak M, Kirkpatrick CJ, Fuchs S (2011) Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells. Tissue Eng Part A 17:2199–2212

    Google Scholar 

  60. Seebach C, Henrich D, Wilhelm K, Barker JH, Marzi I (2012) Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant 21:1667–1677

    Google Scholar 

  61. Aguirre A, Planell JA, Engel E (2010) Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun 400:284–291

    Google Scholar 

  62. Galas RJJ, Liu JC (2014) Vascular endothelial growth factor does not accelerate endothelial differentiation of human mesenchymal stem cells. J Cell Physiol 229:90–96

    Google Scholar 

  63. Han L, Shao J, Su L, Gao J, Wang S, Zhang Y et al (2012) A chemical small molecule induces mouse embryonic stem cell differentiation into functional vascular endothelial cells via Hmbox1. Stem Cells Dev 21:2762–2769

    Google Scholar 

  64. Kulangara K, Leong KW (2009) Substrate topography shapes cell function. Soft Matter 5:4072–4076

    Google Scholar 

  65. Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31:1299–1306

    Google Scholar 

  66. Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473

    Google Scholar 

  67. Portalska KJ, Leferink A, Groen N, Fernandes H, Moroni L, van Blitterswijk C et al (2012) Endothelial differentiation of mesenchymal stromal cells. PLoS One 7:e46842

    Google Scholar 

  68. Zhang X, Nan Y, Wang H, Chen J, Wang N, Xie J et al (2013) Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Naturwissenschaften 100:125–133

    Google Scholar 

  69. Warrier S, Haridas N, Bhonde R (2012) Inherent propensity of amnion-derived mesenchymal stem cells towards endothelial lineage: vascularization from an avascular tissue. Placenta 33:850–858

    Google Scholar 

  70. Silva GV, Litovsky S, Assad JAR, Sousa ALS, Martin BJ, Vela D et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Google Scholar 

  71. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Google Scholar 

  72. Choong CSN, Hutmacher DW, Triffitt JT (2006) Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng 12:2521–2531

    Google Scholar 

  73. Kaigler D, Krebsbach PH, Wang Z, West ER, Horger K, Mooney DJ (2006) Transplanted endothelial cells enhance orthotopic bone regeneration. J Dent Res 85:633–637

    Google Scholar 

  74. Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ (2003) Mesenchymal stem cells. Arch Med Res 34:565–571

    Google Scholar 

  75. Al-Khaldi A, Al-Sabti H, Galipeau J, Lachapelle K (2003) Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 75:204–209

    Google Scholar 

  76. Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Heydarkhan S, Xu Y, Zuk PA et al (2008) Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 187:263–274

    Google Scholar 

  77. Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z et al (2009) Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 15:2039–2050

    Google Scholar 

  78. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Google Scholar 

  79. Weinzierl K, Hemprich A, Frerich B (2006) Bone engineering with adipose tissue derived stromal cells. J Craniomaxillofac Surg 34:466–471

    Google Scholar 

  80. Zhu Y, Liu T, Song K, Fan X, Ma X, Cu Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Google Scholar 

  81. Bhang SH, Cho S-W, Lim JM, Kang JM, Lee T-J, Yang HS et al (2009) Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs. Stem Cells 27:1976–1986

    Google Scholar 

  82. Deveza L, Choi J, Yang F (2012) Therapeutic angiogenesis for treating cardiovascular diseases. Theranostics 2:801–814

    Google Scholar 

  83. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Google Scholar 

  84. Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12:295–310

    Google Scholar 

  85. Tengood JE, Ridenour R, Brodsky R, Russell AJ, Little SR (2011) Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis. Tissue Eng Part A 17:1181–1189

    Google Scholar 

  86. Tengood JE, Kovach KM, Vescovi PE, Russell AJ, Little SR (2010) Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials 31:7805–7812

    Google Scholar 

  87. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease—Part I: Angiogenic cytokines. Circulation 109:2487–2491

    Google Scholar 

  88. Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK (1996) Quantitation and physiological characterization of angiogenic vessels in mice—effect of basic fibroblast growth factor vascular endothelial growth factor vascular permeability factor, and host microenvironment. Am J Pathol 149:59–71

    Google Scholar 

  89. Brey EM, McIntire LV (2008) Vascular assembly in engineered and nature tissues. In: Atala A (ed) Principles of regenerative medicine. Elsevier, Burlington, MA, pp 1020–1037

    Google Scholar 

  90. Cao RH, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E et al (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613

    Google Scholar 

  91. Nillesen STM, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28:1123–1131

    Google Scholar 

  92. L’Heureux N, Dusserre N, Marini A, Garrido S, de la Fuente L, McAllister T (2007) Technology Insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat Clin Pract Cardiovasc Med 4:389–395

    Google Scholar 

  93. Sieminski AL, Hebbel RP, Gooch KJ (2004) The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 297:574–584

    Google Scholar 

  94. Stevenson MD, Piristine H, Hogrebe NJ, Nocera TM, Boehm MW, Reen RK et al (2013) A self-assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions. Acta Biomater 9:7651–7661

    Google Scholar 

  95. Yamamura N, Sudo R, Ikeda M, Tanishita K (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13:1443–1453

    Google Scholar 

  96. Hanjaya-Putra D, Yee J, Ceci D, Truitt R, Yee D, Gerecht S (2010) Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J Cell Mol Med 14:2436–2447

    Google Scholar 

  97. Davis GE, Saunders WB (2006) Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc 11:44–56

    Google Scholar 

  98. Duffy GP, McFadden TM, Byrne EM, Gill S-L, Farrell E, O’Brien FJ (2011) Towards in vitro vascularisation of collagen-GAG scaffolds. Eur Cell Mater 21:15–30

    Google Scholar 

  99. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2011) The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (epsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 32:8108–8117

    Google Scholar 

  100. Chen Y-C, Lin R-Z, Qi H, Yang Y, Bae H, Melero-Martin JM et al (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039

    Google Scholar 

  101. Hanjaya-Putra D, Bose V, Shen Y-I, Yee J, Khetan S, Fox-Talbot K et al (2011) Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:804–815

    Google Scholar 

  102. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65A:489–497

    Google Scholar 

  103. Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CCW et al (2009) Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A 15:1363–1371

    Google Scholar 

  104. Lesman A, Koffler J, Atlas R, Blinder YJ, Kam Z, Levenberg S (2011) Engineering vessel-like networks within multicellular fibrin-based constructs. Biomaterials 32:7856–7869

    Google Scholar 

  105. Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477

    Google Scholar 

  106. Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T et al (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. J Control Release 147:30–37

    Google Scholar 

  107. Golub JS, Kim Y-t, Duvall CL, Bellamkonda RV, Gupta D, Lin AS et al (2010) Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298:H1959–H1965

    Google Scholar 

  108. Whelan MC, Senger DR (2003) Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem 278:327–334

    Google Scholar 

  109. Haas TL, Davis SJ, Madri JA (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273:3604–3610

    Google Scholar 

  110. Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K et al (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33:9009–9018

    Google Scholar 

  111. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Google Scholar 

  112. Dickinson LE, Kusuma S, Gerecht S (2011) Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol Biosci 11:36–49

    Google Scholar 

  113. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Google Scholar 

  114. Nor JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK et al (2001) Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest 81:453–463

    Google Scholar 

  115. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99:4391–4396

    Google Scholar 

  116. Moon JJ, Saik JE, Poche RA, Leslie-Barbick JE, Lee S-H, Smith AA et al (2010) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840–3847

    Google Scholar 

  117. Leslie-Barbick JE, Moon JJ, West JL (2009) Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 20:1763–1779

    Google Scholar 

  118. Leslie-Barbick JE, Shen C, Chen C, West JL (2011) Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng Part A 17:221–229

    Google Scholar 

  119. Elcin YM, Dixit V, Gitnick T (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 25:558–565

    Google Scholar 

  120. Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ (2005) Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res 20:848–857

    Google Scholar 

  121. Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21:735–744

    Google Scholar 

  122. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Google Scholar 

  123. Kaihara S, Borenstein J, Koka R, Lalan S, Ochoa ER, Ravens M et al (2000) Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 6:105–117

    Google Scholar 

  124. Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175

    Google Scholar 

  125. Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J et al (2004) Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices 6:269–278

    Google Scholar 

  126. Koffler J, Kaufman-Francis K, Yulia S, Dana E, Daria AP, Landesberg A et al (2011) Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci U S A 108:14789–14794

    Google Scholar 

  127. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480–2487

    Google Scholar 

  128. Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD et al (2013) Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci U S A 110:7586–7591

    Google Scholar 

  129. Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng 2:227

    Google Scholar 

  130. Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Google Scholar 

  131. Dike LE, Chen CS, Mrksich M, Tien J, Whitesides GM, Ingber DE (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol Anim 35:441–448

    Google Scholar 

  132. Chiu LLY, Montgomery M, Liang Y, Liu H, Radisic M (2012) Perfusable branching microvessel bed for vascularization of engineered tissues. Proc Natl Acad Sci U S A 109:E3414–E3423

    Google Scholar 

  133. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    Google Scholar 

  134. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW et al (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24:1782–1804

    Google Scholar 

  135. Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S et al (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21:790–801

    Google Scholar 

  136. Kusuma S, Shen Y-I, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S (2013) Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A 110:12601–12606

    Google Scholar 

  137. Turturro MV, Christenson MC, Larson JC, Young DA, Brey EM, Papavasiliou G (2013) MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS One 8:e58897

    Google Scholar 

  138. Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT (2006) Micro fabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27:2558–2565

    Google Scholar 

  139. Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ (2005) Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res A 75A:668–680

    Google Scholar 

  140. Bettinger CJ, Zhang Z, Gerecht S, Borenstein JT, Langer R (2008) Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater 20:99

    Google Scholar 

  141. Koroleva A, Gittard S, Schlie S, Deiwick A, Jockenhoevel S, Chichkov B (2012) Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique. Biofabrication 4:015001

    Google Scholar 

  142. He J, Wang Y, Liu Y, Li D, Jin Z (2013) Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks. Biofabrication 5:025002

    Google Scholar 

  143. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376

    Google Scholar 

  144. Cuchiara MP, Allen ACB, Chen TM, Miller JS, West JL (2010) Multilayer microfluidic PEGDA hydrogels. Biomaterials 31:5491–5497

    Google Scholar 

  145. King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable microfluidics. Adv Mater 16:2007

    Google Scholar 

  146. Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540

    Google Scholar 

  147. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD (2005) Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309

    Google Scholar 

  148. Lee KB, Kim DJ, Lee ZW, Woo SI, Choi IS (2004) Pattern generation of biological ligands on a biodegradable poly(glycolic acid) film. Langmuir 20:2531–2535

    Google Scholar 

  149. Lopez GP, Albers MW, Schreiber SL, Carroll R, Peralta E, Whitesides GM (1993) Convenient methods for patterning the adhesion of mammalian-cells to surfaces using self-assembled monolayers of alkanethiolates on gold. J Am Chem Soc 115:5877–5878

    Google Scholar 

  150. Dickinson LE, Moura ME, Gerecht S (2010) Guiding endothelial progenitor cell tube formation using patterned fibronectin surfaces. Soft Matter 6:5109–5119

    Google Scholar 

  151. Moldovan NI, Ferrari M (2002) Prospects for microtechnology and nanotechnology in bioengineering of replacement microvessels. Arch Pathol Lab Med 126:320–324

    Google Scholar 

  152. Trkov S, Eng G, Di Liddo R, Parnigotto PP, Vunjak-Novakovic G (2010) Micropatterned three-dimensional hydrogel system to study human endothelial—mesenchymal stem cell interactions. J Tissue Eng Regen Med 4:205–215

    Google Scholar 

  153. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915

    Google Scholar 

  154. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Google Scholar 

  155. Gu W, Zhu XY, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A 101:15861–15866

    Google Scholar 

  156. Song JW, Bazou D, Munn LL (2012) Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr Biol 4:857–862

    Google Scholar 

  157. Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim H-Y et al (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748

    Google Scholar 

  158. Zhang B, Peticone C, Murthy SK, Radisic M (2013) A standalone perfusion platform for drug testing and target validation in micro-vessel networks. Biomicrofluidics 7:44125

    Google Scholar 

  159. Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725

    Google Scholar 

  160. Carrion B, Huang CP, Ghajar CM, Kachgal S, Kniazeva E, Jeon NL et al (2010) Recreating the perivascular niche ex vivo using a microfluidic approach. Biotechnol Bioeng 107:1020–1028

    Google Scholar 

  161. Lu Y, Mapili G, Suhali G, Chen SC, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77A:396–405

    Google Scholar 

  162. Mezel C, Souquet A, Hallo L, Guillemot F (2010) Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication 2:014103

    Google Scholar 

  163. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R et al (2010) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 16:847–854

    Google Scholar 

  164. Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10:409–420

    Google Scholar 

  165. Huang J-H, Kim J, Agrawal N, Sudarson AP, Maxim JE, Jayaraman A et al (2009) Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv Mater 21:3567

    Google Scholar 

  166. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Google Scholar 

  167. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C et al (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230

    Google Scholar 

  168. Wan ACA, Liao IC, Yim EKF, Leong KW (2004) Mechanism of fiber formation by interfacial polyelectrolyte complexation. Macromolecules 37:7019–7025

    Google Scholar 

  169. Leong MF, Toh JKC, Du C, Narayanan K, Lu HF, Lim TC et al (2013) Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 4:2353

    Google Scholar 

  170. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412

    Google Scholar 

  171. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    Google Scholar 

  172. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Google Scholar 

  173. Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B et al (2006) Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett 6:537–542

    Google Scholar 

  174. Patel S, Kurpinski K, Quigley R, Gao H, Hsiao BS, Poo M-M et al (2007) Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 7:2122–2128

    Google Scholar 

  175. Hashi CK, Zhu Y, Yang G-Y, Young WL, Hsiao BS, Wang K et al (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A 104:11915–11920

    Google Scholar 

  176. Pasquinelli G, Vinci MC, Gamberini C, Orrico C, Foroni L, Guarnieri C et al (2009) Architectural organization and functional features of early endothelial progenitor cells cultured in a hyaluronan-based polymer scaffold. Tissue Eng Part A 15:2751–2762

    Google Scholar 

  177. Chouinard JA, Gagnon S, Couture MG, Levesque A, Vermette P (2009) Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures. Biotechnol Bioeng 104:1215–1223

    Google Scholar 

  178. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96:1110–1126

    Google Scholar 

  179. Stegemann JP, Nerem RM (2003) Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann Biomed Eng 31:391–402

    Google Scholar 

  180. Conklin BS, Zhong DS, Zhao WD, Lin PH, Chen CY (2002) Shear stress regulates occludin and VEGF expression in porcine arterial endothelial cells. J Surg Res 102:13–21

    Google Scholar 

  181. Akhyari P, Fedak PWM, Weisel RD, Lee TYJ, Verma S, Mickle DAG et al (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106:I137–I142

    Google Scholar 

  182. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A et al (2002) In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 124:63–69

    Google Scholar 

  183. Bilodeau K, Mantovani D (2006) Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 12:2367–2383

    Google Scholar 

  184. Cartmell SH, Porter BD, Garcia AJ, Guldberg RE (2003) Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng 9:1197–1203

    Google Scholar 

  185. Sodian R, Lemke T, Fritsche C, Hoerstrup SP, Fu P, Potapov EV et al (2002) Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng 8:863–870

    Google Scholar 

  186. Yao L, Swartz DD, Gugino SF, Russell JA, Andreadis ST (2005) Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity. Tissue Eng 11:991–1003

    Google Scholar 

  187. Kurpinski K, Park J, Thakar RG, Li S (2006) Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3:21–34

    MATH  Google Scholar 

  188. Stegemann JP, Hong H, Nerem RM (2005) Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol 98:2321–2327

    Google Scholar 

  189. Saha S, Lin J, De Pablo JJ, Palecek SP (2006) Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol 206:126–137

    Google Scholar 

  190. Liu Y, Teoh S-H, Chong MSK, Yeow C-H, Kamm RD, Choolani M et al (2013) Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng Part A 19:893–904

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nikkhah Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kharaziha, M., Nikkhah, M. (2016). Spatial Patterning of Stem Cells to Engineer Microvascular Networks. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics