Skip to main content

Stem Cell and Stem Cell-Derived Molecular Therapies to Enhance Dermal Wound Healing

  • Chapter
Microscale Technologies for Cell Engineering

Abstract

Chronic wounds that do not heal with standard wound care are a growing public healthcare concern. Wound care costs associated with lower extremity ulcers, such as venous leg ulcers, pressure ulcers, and diabetic foot ulcers, place a significant burden on healthcare systems and severely lower the quality of life for patients. Advanced wound care therapies are needed to promote wound closure in recalcitrant wounds. Exogenous mesenchymal stem cell delivery and endogenous bone marrow stem cell recruitment have been investigated as advanced wound therapies, and have demonstrated promising potential for enhancing wound closure in preclinical and clinical studies. The aim of this book chapter is to review the wound healing process and pathobiology of chronic wounds, and discuss the current state of stem cell therapies as advanced wound therapies. The potential role of nano- and micro-scale technologies in addressing current limitations of stem cell therapies will also be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ang:

Angiopoietin

AV/PCL:

Aloe vera‐polycaprolactone

bFGF:

Basic fibroblast growth factor

BMP:

Bone morphogenic protein

EGF:

Epidermal growth factor

EPC:

Endothelial progenitor cell

G-CSF:

Granulocyte colony-stimulating factor

GFP:

Green fluorescent protein

GM-CSF:

Granulocyte macrophage colony-stimulating factor

HB-EGF:

Heparin-binding EGF-like growth factor

HBOT:

Hyperbaric oxygen therapy

HCT/P:

Human cells, tissues, and cellular and tissue-based product

HFSC:

Hair follicle stem cell

HGF:

Hepatocyte growth factor

HSC:

Hematopoietic stem cell

IFE:

Interfollicular epidermis

IGF:

Insulin-like growth factor

IL:

Interleukin

KGF:

Keratinocyte growth factor

Krt:

Keratin

MCP:

Monocyte chemotactic protein

MIP:

Macrophage inflammatory protein

MMP:

Matrix metalloprotease

MSC:

Mesenchymal stem cell

PDGF:

Platelet-derived growth factor

SDF:

Stromal derived factor

SMA:

Smooth muscle actin

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

References

  1. Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman C, Faulkner E, Gould C, Gemmen E, Dall T, American Academy of Dermatology A, Society for Investigative Dermatology (2006) The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol 55(3):490–500. doi:10.1016/j.jaad.2006.05.048

    Article  Google Scholar 

  2. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771. doi:10.1111/j.1524-475X.2009.00543.x

    Article  Google Scholar 

  3. Driver VR, Fabbi M, Lavery LA, Gibbons G (2010) The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg 52(3 Suppl):17S–22S. doi:10.1016/j.jvs.2010.06.003

    Article  Google Scholar 

  4. Jupiter DC, Thorud JC, Buckley CJ, Shibuya N (2015) The impact of foot ulceration and amputation on mortality in diabetic patients. I: from ulceration to death, a systematic review. Int Wound J. doi:10.1111/iwj.12404

    Google Scholar 

  5. Zahorec P, Koller J, Danisovic L, Bohac M (2015) Mesenchymal stem cells for chronic wounds therapy. Cell Tissue Bank 16(1):19–26. doi:10.1007/s10561-014-9440-2

    Article  Google Scholar 

  6. National Institutes of Health NIH Fact Sheet: Cancer http://report.nih.gov/nihfactsheets/viewfactsheet.aspx?csid=75. Accessed 16 Apr 2015

  7. Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856. doi:10.1038/nm.3643

    Article  Google Scholar 

  8. Watt FM (2014) Mammalian skin cell biology: at the interface between laboratory and clinic. Science 346(6212):937–940. doi:10.1126/science.1253734

    Article  Google Scholar 

  9. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217. doi:10.1038/nrm2636

    Article  Google Scholar 

  10. Coulombe PA, Kopan R, Fuchs E (1989) Expression of keratin K14 in the epidermis and hair follicle: insights into complex programs of differentiation. J Cell Biol 109(5):2295–2312

    Article  Google Scholar 

  11. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854–860. doi:10.1038/416854a

    Article  Google Scholar 

  12. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363. doi:10.1126/science.1092436

    Article  Google Scholar 

  13. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299. doi:10.1038/ng.239

    Article  Google Scholar 

  14. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354. doi:10.1038/nm1328

    Article  Google Scholar 

  15. Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9(6):855–861. doi:10.1016/j.devcel.2005.11.003

    Article  Google Scholar 

  16. Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21(7):1358–1366. doi:10.1096/fj.06-6926com

    Article  Google Scholar 

  17. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327(5971):1385–1389. doi:10.1126/science.1184733

    Article  Google Scholar 

  18. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8(5):552–565. doi:10.1016/j.stem.2011.02.021

    Article  Google Scholar 

  19. Jensen KB, Watt FM (2006) Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci U S A 103(32):11958–11963. doi:10.1073/pnas.0601886103

    Article  Google Scholar 

  20. Nijhof JG, Braun KM, Giangreco A, van Pelt C, Kawamoto H, Boyd RL, Willemze R, Mullenders LH, Watt FM, de Gruijl FR, van Ewijk W (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133(15):3027–3037. doi:10.1242/dev.02443

    Article  Google Scholar 

  21. Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, Nussenzweig M, Tarakhovsky A, Fuchs E (2006) Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126(3):597–609. doi:10.1016/j.cell.2006.06.048

    Article  Google Scholar 

  22. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4(5):427–439. doi:10.1016/j.stem.2009.04.014

    Article  Google Scholar 

  23. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746. doi:10.1056/NEJM199909023411006

    Article  Google Scholar 

  24. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. doi:10.1155/2010/672395

    Google Scholar 

  25. Dovi JV, He LK, DiPietro LA (2003) Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol 73(4):448–455

    Article  Google Scholar 

  26. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71–100

    Google Scholar 

  27. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525. doi:10.1038/sj.jid.5700701

    Article  Google Scholar 

  28. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, Roers A, Eming SA (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184(7):3964–3977. doi:10.4049/jimmunol.0903356

    Article  Google Scholar 

  29. Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18. doi:10.1016/j.clindermatol.2006.09.007

    Article  MATH  Google Scholar 

  30. Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP (2013) The resolution of inflammation. Nat Rev Immunol 13(1):59–66. doi:10.1038/nri3362

    Article  Google Scholar 

  31. Eming SA, Brachvogel B, Odorisio T, Koch M (2007) Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42(3):115–170. doi:10.1016/j.proghi.2007.06.001

    Article  Google Scholar 

  32. Swift ME, Kleinman HK, DiPietro LA (1999) Impaired wound repair and delayed angiogenesis in aged mice. Lab Invest 79(12):1479–1487

    Google Scholar 

  33. Szpaderska AM, Walsh CG, Steinberg MJ, DiPietro LA (2005) Distinct patterns of angiogenesis in oral and skin wounds. J Dent Res 84(4):309–314

    Article  Google Scholar 

  34. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355. doi:10.1016/j.ajpath.2012.02.004

    Article  Google Scholar 

  35. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3(7):445–464. doi:10.1089/wound.2013.0473

    Article  Google Scholar 

  36. Santoro MM, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304(1):274–286. doi:10.1016/j.yexcr.2004.10.033

    Article  Google Scholar 

  37. Welch MP, Odland GF, Clark RA (1990) Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 110(1):133–145

    Article  Google Scholar 

  38. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127(3):526–537. doi:10.1038/sj.jid.5700613

    Article  Google Scholar 

  39. Wietecha MS, Cerny WL, DiPietro LA (2013) Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. Curr Top Microbiol Immunol 367:3–32. doi:10.1007/82_2012_287

    Google Scholar 

  40. Plikus MV, Gay DL, Treffeisen E, Wang A, Supapannachart RJ, Cotsarelis G (2012) Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol 23(9):946–953. doi:10.1016/j.semcdb.2012.10.001

    Article  Google Scholar 

  41. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305(5680):90–93. doi:10.1126/science.1098925

    Article  Google Scholar 

  42. Borue X, Lee S, Grove J, Herzog EL, Harris R, Diflo T, Glusac E, Hyman K, Theise ND, Krause DS (2004) Bone marrow-derived cells contribute to epithelial engraftment during wound healing. Am J Pathol 165(5):1767–1772. doi:10.1016/S0002-9440(10)63431-1

    Article  Google Scholar 

  43. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    Article  Google Scholar 

  44. Brittan M, Braun KM, Reynolds LE, Conti FJ, Reynolds AR, Poulsom R, Alison MR, Wright NA, Hodivala-Dilke KM (2005) Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J Pathol 205(1):1–13. doi:10.1002/path.1682

    Article  Google Scholar 

  45. Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N, Kondo T (2012) Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest 122(2):711–721. doi:10.1172/JCI43027

    Article  Google Scholar 

  46. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM (2009) Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 4(1):62–72. doi:10.1016/j.stem.2008.10.017

    Article  Google Scholar 

  47. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947. doi:10.1016/S0002-9440(10)63754-6

    Article  Google Scholar 

  48. Seppanen E, Roy E, Ellis R, Bou-Gharios G, Fisk NM, Khosrotehrani K (2013) Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PLoS One 8(5), e62662. doi:10.1371/journal.pone.0062662

    Article  Google Scholar 

  49. Albiero M, Menegazzo L, Boscaro E, Agostini C, Avogaro A, Fadini GP (2011) Defective recruitment, survival and proliferation of bone marrow-derived progenitor cells at sites of delayed diabetic wound healing in mice. Diabetologia 54(4):945–953. doi:10.1007/s00125-010-2007-2

    Article  Google Scholar 

  50. Hong S, Alapure BV, Lu Y, Tian H, Wang Q (2014) Immunohistological localization of endogenous unlabeled stem cells in wounded skin. J Histochem Cytochem 62(4):276–285. doi:10.1369/0022155414520710

    Article  Google Scholar 

  51. Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y (2011) Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117(19):5264–5272. doi:10.1182/blood-2011-01-330720

    Article  Google Scholar 

  52. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6(265):265sr266. doi:10.1126/scitranslmed.3009337

    Article  Google Scholar 

  53. Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130(4):489–493

    Article  Google Scholar 

  54. Fife CE, Carter MJ, Walker D, Thomson B (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: data from the US Wound Registry. Wounds 24(1):10–17

    Google Scholar 

  55. Wipke-Tevis DD, Sae-Sia W (2005) Management of vascular leg ulcers. Adv Skin Wound Care 18(8):437–445, quiz 446-437

    Article  Google Scholar 

  56. Qaseem A, Mir TP, Starkey M, Denberg TD, Clinical Guidelines Committee of the American College of Physicians (2015) Risk assessment and prevention of pressure ulcers: a clinical practice guideline from the american college of physicians. Ann Intern Med 162(5):359–369. doi:10.7326/M14-1567

    Article  Google Scholar 

  57. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743. doi:10.1016/S0140-6736(05)67700-8

    Article  Google Scholar 

  58. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53(1):195–199

    Article  Google Scholar 

  59. Gallagher KA, Liu Z-J, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. J Clin Invest 117(5):1249–1259. doi:10.1172/JCI29710DS1

    Article  Google Scholar 

  60. Stojadinovic O, Pastar I, Nusbaum AG, Vukelic S, Krzyzanowska A, Tomic-Canic M (2014) Deregulation of epidermal stem cell niche contributes to pathogenesis of nonhealing venous ulcers. Wound Repair Regen 22(2):220–227. doi:10.1111/wrr.12142

    Article  Google Scholar 

  61. Kantor J, Margolis DJ (2000) Expected healing rates for chronic wounds. Wounds 12:155–158

    Google Scholar 

  62. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196(2):245–250. doi:10.1002/jcp.10260

    Article  Google Scholar 

  63. Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 139(4):510–516. doi:10.1001/archderm.139.4.510

    Article  Google Scholar 

  64. Rogers LC, Bevilacqua NJ, Armstrong DG (2008) The use of marrow-derived stem cells to accelerate healing in chronic wounds. Int Wound J 5(1):20–25. doi:10.1111/j.1742-481X.2007.00349.x

    Article  Google Scholar 

  65. Jain P, Perakath B, Jesudason MR, Nayak S (2011) The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study. Ostomy Wound Manage 57(7):38–44

    Google Scholar 

  66. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  Google Scholar 

  67. Ng CP, Sharif AR, Heath DE, Chow JW, Zhang CB, Chan-Park MB, Hammond PT, Chan JK, Griffith LG (2014) Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 35(13):4046–4057. doi:10.1016/j.biomaterials.2014.01.081

    Article  Google Scholar 

  68. Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP, Kozin ED, Beggs K, Malik AA, Flake AW (2007) Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen 15(3):350–359. doi:10.1111/j.1524-475X.2007.00237.x

    Article  Google Scholar 

  69. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312. doi:10.1089/ten.2006.0278

    Article  Google Scholar 

  70. Chen L, Tredget EE, Liu C, Wu Y (2009) Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PLoS One 4(9), e7119. doi:10.1371/journal.pone.0007119

    Article  Google Scholar 

  71. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659. doi:10.1634/stemcells.2007-0226

    Article  Google Scholar 

  72. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24. doi:10.1016/j.jdermsci.2007.05.018

    Article  Google Scholar 

  73. Altman AM, Matthias N, Yan Y, Song YH, Bai X, Chiu ES, Slakey DP, Alt EU (2008) Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 29(10):1431–1442. doi:10.1016/j.biomaterials.2007.11.026

    Article  Google Scholar 

  74. Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R (2009) Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 29(4):503–510. doi:10.1161/ATVBAHA.108.178962

    Article  Google Scholar 

  75. Nambu M, Ishihara M, Nakamura S, Mizuno H, Yanagibayashi S, Kanatani Y, Hattori H, Takase B, Ishizuka T, Kishimoto S, Amano Y, Yamamoto N, Azuma R, Kiyosawa T (2007) Enhanced healing of mitomycin C-treated wounds in rats using inbred adipose tissue-derived stromal cells within an atelocollagen matrix. Wound Repair Regen 15(4):505–510. doi:10.1111/j.1524-475X.2007.00258.x

    Article  Google Scholar 

  76. Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, Azuma R, Nakamura S, Kiyosawa T, Ishihara M, Kanatani Y (2009) Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 62(3):317–321. doi:10.1097/SAP.0b013e31817f01b6

    Article  Google Scholar 

  77. Luo G, Cheng W, He W, Wang X, Tan J, Fitzgerald M, Li X, Wu J (2010) Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen 18(5):506–513. doi:10.1111/j.1524-475X.2010.00616.x

    Article  Google Scholar 

  78. Tark KC, Hong JW, Kim YS, Hahn SB, Lee WJ, Lew DH (2010) Effects of human cord blood mesenchymal stem cells on cutaneous wound healing in leprdb mice. Ann Plast Surg 65(6):565–572. doi:10.1097/SAP.0b013e3181d9aae2

    Article  Google Scholar 

  79. Sabapathy V, Sundaram B, Sreelakshmi VM, Mankuzhy P, Kumar S (2014) Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One 9(4):e93726. doi: 10.1371/journal.pone.0093726

    Google Scholar 

  80. Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Tien CH, Jeschke MG (2014) Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther 5(1):28. doi:10.1186/scrt417

    Article  Google Scholar 

  81. Kong P, Xie X, Li F, Liu Y, Lu Y (2013) Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats. Biochem Biophys Res Commun 438(2):410–419. doi:10.1016/j.bbrc.2013.07.088

    Article  Google Scholar 

  82. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301. doi:10.1634/stemcells.2005-0342

    Article  Google Scholar 

  83. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926

    Article  Google Scholar 

  84. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109, doi: 71150

    Article  Google Scholar 

  85. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11(5):568–577. doi:10.1002/jbmr.5650110504

    Article  Google Scholar 

  86. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14(7):1115–1122. doi:10.1359/jbmr.1999.14.7.1115

    Article  Google Scholar 

  87. Musina RA, Bekchanova ES, Belyavskii AV, Grinenko TS, Sukhikh GT (2007) Umbilical cord blood mesenchymal stem cells. Bull Exp Biol Med 143(1):127–131

    Article  Google Scholar 

  88. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal “stem” cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374

    Article  Google Scholar 

  89. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229. doi:10.1634/stemcells.2004-0166

    Article  Google Scholar 

  90. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392. doi:10.1634/stemcells.2006-0709

    Article  Google Scholar 

  91. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345. doi:10.1634/stemcells.2004-0058

    Article  Google Scholar 

  92. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi:10.1182/blood-2004-04-1559

    Article  Google Scholar 

  93. Shin L, Peterson DA (2013) Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med 2(1):33–42. doi:10.5966/sctm.2012-0041

    Article  Google Scholar 

  94. Shin L, Peterson DA (2012) Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes. Stem Cells Transl Med 1(2):125–135. doi:10.5966/sctm.2012-0031

    Article  Google Scholar 

  95. Kato J, Kamiya H, Himeno T, Shibata T, Kondo M, Okawa T, Fujiya A, Fukami A, Uenishi E, Seino Y, Tsunekawa S, Hamada Y, Naruse K, Oiso Y, Nakamura J (2014) Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complications 28(5):588–595. doi:10.1016/j.jdiacomp.2014.05.003

    Article  Google Scholar 

  96. Rasulov MF, Vasilchenkov AV, Onishchenko NA, Krasheninnikov ME, Kravchenko VI, Gorshenin TL, Pidtsan RE, Potapov IV (2005) First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med 139(1):141–144

    Article  Google Scholar 

  97. Lavery LA, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, Kashefsky H, Owings TM, Nadarajah J, Grafix Diabetic Foot Ulcer Study Group (2014) The efficacy and safety of Grafix((R)) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J 11(5):554–560. doi:10.1111/iwj.12329

    Article  Google Scholar 

  98. Vojtassak J, Danisovic L, Kubes M, Bakos D, Jarabek L, Ulicna M, Blasko M (2006) Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 27(Suppl 2):134–137

    Google Scholar 

  99. Asumda FZ, Chase PB (2011) Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biol 12:44. doi:10.1186/1471-2121-12-44

    Article  Google Scholar 

  100. Yu JM, Wu X, Gimble JM, Guan X, Freitas MA, Bunnell BA (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79. doi:10.1111/j.1474-9726.2010.00646.x

    Article  Google Scholar 

  101. Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W, Zhang H, Hu Q, Du J (2014) Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 9(2), e88348. doi:10.1371/journal.pone.0088348

    Article  Google Scholar 

  102. Liu P, Deng Z, Han S, Liu T, Wen N, Lu W, Geng X, Huang S, Jin Y (2008) Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artif Organs 32(12):925–931. doi:10.1111/j.1525-1594.2008.00654.x

    Article  Google Scholar 

  103. McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS, Bansal M, Li Y, Chopp M, Dulchavsky SA, Gautam SC (2006) Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 14(4):471–478. doi:10.1111/j.1743-6109.2006.00153.x

    Article  Google Scholar 

  104. Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4), e1886. doi:10.1371/journal.pone.0001886

    Article  Google Scholar 

  105. Castilla DM, Liu ZJ, Tian R, Li Y, Livingstone AS, Velazquez OC (2012) A novel autologous cell-based therapy to promote diabetic wound healing. Ann Surg 256(4):560–572. doi:10.1097/SLA.0b013e31826a9064

    Article  Google Scholar 

  106. Dong F, Caplan AI (2012) Cell transplantation as an initiator of endogenous stem cell-based tissue repair. Curr Opin Organ Transplant 17(6):670–674. doi:10.1097/MOT.0b013e328359a617

    Article  Google Scholar 

  107. Velander P, Theopold C, Hirsch T, Bleiziffer O, Zuhaili B, Fossum M, Hoeller D, Gheerardyn R, Chen M, Visovatti S, Svensson H, Yao F, Eriksson E (2008) Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen 16(2):288–293. doi:10.1111/j.1524-475X.2008.00367.x

    Article  Google Scholar 

  108. Kim J, Lee JH, Yeo SM, Chung HM, Chae JI (2014) Stem cell recruitment factors secreted from cord blood-derived stem cells that are not secreted from mature endothelial cells enhance wound healing. In Vitro Cell Dev Biol Anim 50(2):146–154. doi:10.1007/s11626-013-9687-0

    Article  Google Scholar 

  109. Chen L, Xu Y, Zhao J, Zhang Z, Yang R, Xie J, Liu X, Qi S (2014) Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One 9(4), e96161. doi:10.1371/journal.pone.0096161

    Article  Google Scholar 

  110. Shrestha C, Zhao L, Chen K, He H, Mo Z (2013) Enhanced healing of diabetic wounds by subcutaneous administration of human umbilical cord derived stem cells and their conditioned media. Int J Endocrinol 2013:592454. doi:10.1155/2013/592454

    Google Scholar 

  111. Fitzpatrick LE, McDevitt TC (2015) Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci 3(1):12–24. doi:10.1039/C4BM00246F

    Article  Google Scholar 

  112. Navone SE, Pascucci L, Dossena M, Ferri A, Invernici G, Acerbi F, Cristini S, Bedini G, Tosetti V, Ceserani V, Bonomi A, Pessina A, Freddi G, Alessandrino A, Ceccarelli P, Campanella R, Marfia G, Alessandri G, Parati EA (2014) Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther 5(1):7. doi:10.1186/scrt396

    Article  Google Scholar 

  113. Nair R, Ngangan AV, Kemp ML, McDevitt TC (2012) Gene expression signatures of extracellular matrix and growth factors during embryonic stem cell differentiation. PLoS One 7(10), e42580. doi:10.1371/journal.pone.0042580

    Article  Google Scholar 

  114. Ngangan AV, Waring JC, Cooke MT, Mandrycky CJ, McDevitt TC (2014) Soluble factors secreted by differentiating embryonic stem cells stimulate exogenous cell proliferation and migration. Stem Cell Res Ther 5(1):26. doi:10.1186/scrt415

    Article  Google Scholar 

  115. Dabiri G, Heiner D, Falanga V (2013) The emerging use of bone marrow-derived mesenchymal stem cells in the treatment of human chronic wounds. Expert Opin Emerg Drugs 18(4):405–419. doi:10.1517/14728214.2013.833184

    Article  Google Scholar 

  116. Iwamoto S, Lin X, Ramirez R, Carson P, Fiore D, Goodrich J, Yufit T, Falanga V (2013) Bone marrow cell mobilization by the systemic use of granulocyte colony-stimulating factor (GCSF) improves wound bed preparation. Int J Low Extrem Wounds 12(4):256–264. doi:10.1177/1534734613513401

    Article  Google Scholar 

  117. Zhao J, Zhang N, Prestwich GD, Wen X (2008) Recruitment of endogenous stem cells for tissue repair. Macromol Biosci 8(9):836–842. doi:10.1002/mabi.200700334

    Article  Google Scholar 

  118. Fiorina P, Pietramaggiori G, Scherer SS, Jurewicz M, Mathews JC, Vergani A, Thomas G, Orsenigo E, Staudacher C, La Rosa S, Capella C, Carothers A, Zerwes HG, Luzi L, Abdi R, Orgill DP (2010) The mobilization and effect of endogenous bone marrow progenitor cells in diabetic wound healing. Cell Transplant 19(11):1369–1381. doi:10.3727/096368910x514288

    Article  Google Scholar 

  119. Goldstein LJ (2013) Hyperbaric oxygen for chronic wounds. Dermatol Ther 26(3):207–214. doi:10.1111/dth.12053

    Article  Google Scholar 

  120. Boykin JV Jr, Baylis C (2007) Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: a preliminary study. Adv Skin Wound Care 20(7):382–388. doi:10.1097/01.ASW.0000280198.81130.d5

    Article  Google Scholar 

  121. Liu ZJ, Tian R, An W, Zhuge Y, Li Y, Shao H, Habib B, Livingstone AS, Velazquez OC (2010) Identification of E-selectin as a novel target for the regulation of postnatal neovascularization: implications for diabetic wound healing. Ann Surg 252(4):625–634. doi:10.1097/SLA.0b013e3181f5a079

    Google Scholar 

  122. Thom SR, Milovanova TN, Yang M, Bhopale VM, Sorokina EM, Uzun G, Malay DS, Troiano MA, Hardy KR, Lambert DS, Logue CJ, Margolis DJ (2011) Vasculogenic stem cell mobilization and wound recruitment in diabetic patients: increased cell number and intracellular regulatory protein content associated with hyperbaric oxygen therapy. Wound Repair Regen 19(2):149–161. doi:10.1111/j.1524-475X.2010.00660.x

    Article  Google Scholar 

  123. Nishimura Y, Ii M, Qin G, Hamada H, Asai J, Takenaka H, Sekiguchi H, Renault MA, Jujo K, Katoh N, Kishimoto S, Ito A, Kamide C, Kenny J, Millay M, Misener S, Thorne T, Losordo DW (2012) CXCR4 antagonist AMD3100 accelerates impaired wound healing in diabetic mice. J Invest Dermatol 132(3 Pt 1):711–720. doi:10.1038/jid.2011.356

    Article  Google Scholar 

  124. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318. doi:10.1084/jem.20041385

    Article  Google Scholar 

  125. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S, Hangoc G, Bridger GJ, Henson GW, Calandra G, Dale DC (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102(8):2728–2730. doi:10.1182/blood-2003-02-0663

    Article  Google Scholar 

  126. Lin Q, Wesson RN, Maeda H, Wang YC, Cui Z, Liu JO, Cameron AM, Gao B, Montgomery RA, Williams GM, Sun ZL (2014) Pharmacological mobilization of endogenous stem cells significantly promotes skin regeneration after full-thickness excision: the synergistic activity of AMD3100 and tacrolimus. J Invest Dermatol 134(9):2458–2468. doi:10.1038/jid.2014.162

    Article  Google Scholar 

  127. Tolar J, McGrath JA (2014) Augmentation of cutaneous wound healing by pharmacologic mobilization of endogenous bone marrow stem cells. J Invest Dermatol 134(9):2312–2314. doi:10.1038/jid.2014.209

    Article  Google Scholar 

  128. Allen RJ Jr, Soares MA, Haberman ID, Szpalski C, Schachar J, Lin CD, Nguyen PD, Saadeh PB, Warren SM (2014) Combination therapy accelerates diabetic wound closure. PLoS One 9(3), e92667. doi:10.1371/journal.pone.0092667

    Article  Google Scholar 

  129. Restivo TE, Mace KA, Harken AH, Young DM (2010) Application of the chemokine CXCL12 expression plasmid restores wound healing to near normal in a diabetic mouse model. J Trauma 69(2):392–398. doi:10.1097/TA.0b013e3181e772b0

    Article  Google Scholar 

  130. Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M (2015) Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater. doi:10.1002/adhm.201500001

    Google Scholar 

  131. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679. doi:10.1002/jbm.b.10058

    Article  Google Scholar 

  132. Wang CC, Su CH, Chen CC (2008) Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J Biomed Mater Res A 84(4):1006–1017. doi:10.1002/jbm.a.31482

    Article  MathSciNet  Google Scholar 

  133. Lowe A, Bills J, Verma R, Lavery L, Davis K, Balkus KJ Jr (2015) Electrospun nitric oxide releasing bandage with enhanced wound healing. Acta Biomater 13:121–130. doi:10.1016/j.actbio.2014.11.032

    Article  Google Scholar 

  134. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621

    Article  Google Scholar 

  135. Machula H, Ensley B, Kellar R (2014) Electrospun tropoelastin for delivery of therapeutic adipose-derived stem cells to full-thickness dermal wounds. Adv Wound Care 3(5):367–375. doi:10.1089/wound.2013.0513

    Article  Google Scholar 

  136. Shahverdi S, Hajimiri M, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, Dehpour AR, Gharehaghaji AA, Dinarvand R (2014) Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm 473(1-2):345–355. doi:10.1016/j.ijpharm.2014.07.021

    Article  Google Scholar 

  137. Tam K, Cheyyatraviendran S, Venugopal J, Biswas A, Choolani M, Ramakrishna S, Bongso A, Fong CY (2014) A nanoscaffold impregnated with human wharton's jelly stem cells or its secretions improves healing of wounds. J Cell Biochem 115(4):794–803. doi:10.1002/jcb.24723

    Article  Google Scholar 

  138. Gu J, Liu N, Yang X, Feng Z, Qi F (2014) Adiposed-derived stem cells seeded on PLCL/P123 eletrospun nanofibrous scaffold enhance wound healing. Biomed Mater 9(3):035012. doi:10.1088/1748-6041/9/3/035012

    Article  Google Scholar 

  139. He S, Shen L, Wu Y, Li L, Chen W, Hou C, Yang M, Zeng W, Zhu C (2015) Effect of brain-derived neurotrophic factor on mesenchymal stem cell-seeded electrospinning biomaterial for treating ischemic diabetic ulcers via milieu-dependent differentiation mechanism. Tissue Eng Part A 21(5-6):928–938. doi:10.1089/ten.TEA.2014.0113

    Article  Google Scholar 

  140. Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, Longaker MT, Gurtner GC (2012) Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33(1):80–90. doi:10.1016/j.biomaterials.2011.09.041

    Article  Google Scholar 

  141. Kim KL, Han DK, Park K, Song SH, Kim JY, Kim JM, Ki HY, Yie SW, Roh CR, Jeon ES, Kim DK, Suh W (2009) Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials 30(22):3742–3748. doi:10.1016/j.biomaterials.2009.03.053

    Article  Google Scholar 

  142. Guan J, Zhu Z, Zhao RC, Xiao Z, Wu C, Han Q, Chen L, Tong W, Zhang J, Han Q, Gao J, Feng M, Bao X, Dai J, Wang R (2013) Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials 34(24):5937–5946. doi:10.1016/j.biomaterials.2013.04.047

    Article  Google Scholar 

  143. Silva EA, Kim ES, Kong HJ, Mooney DJ (2008) Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci U S A 105(38):14347–14352. doi:10.1073/pnas.0803873105

    Article  Google Scholar 

  144. Borselli C, Cezar CA, Shvartsman D, Vandenburgh HH, Mooney DJ (2011) The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32(34):8905–8914. doi:10.1016/j.biomaterials.2011.08.019

    Article  Google Scholar 

  145. Xie MW, Gorodetsky R, Micewicz ED, Mackenzie NC, Gaberman E, Levdansky L, McBride WH (2013) Marrow-derived stromal cell delivery on fibrin microbeads can correct radiation-induced wound-healing deficits. J Invest Dermatol 133(2):553–561. doi:10.1038/jid.2012.326

    Article  Google Scholar 

  146. Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, Boucher S, Vemuri MC, Silva CL, Cabral JM (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17(12):1201–1210. doi:10.1089/ten.tec.2011.0255

    Article  Google Scholar 

  147. Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X (2012) Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci 66(1):29–36. doi:10.1016/j.jdermsci.2012.02.002

    Article  Google Scholar 

  148. Xie Z, Paras CB, Weng H, Punnakitikashem P, Su LC, Vu K, Tang L, Yang J, Nguyen KT (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9(12):9351–9359. doi:10.1016/j.actbio.2013.07.030

    Article  Google Scholar 

  149. Norouzi M, Shabani I, Ahvaz HH, Soleimani M (2014) PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration. J Biomed Mater Res A. doi:10.1002/jbm.a.35355

    MATH  Google Scholar 

  150. Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10(10):4156–4166. doi:10.1016/j.actbio.2014.05.001

    Article  Google Scholar 

  151. Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, van den Beucken JJ, Jansen JA (2013) Incorporation of stromal cell-derived factor-1alpha in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34(3):735–745. doi:10.1016/j.biomaterials.2012.10.016

    Article  Google Scholar 

  152. Jin Q, Giannobile WV (2014) SDF-1 enhances wound healing of critical-sized calvarial defects beyond self-repair capacity. PLoS One 9(5), e97035. doi:10.1371/journal.pone.0097035

    Article  Google Scholar 

  153. Kuraitis D, Zhang P, Zhang Y, Padavan DT, McEwan K, Sofrenovic T, McKee D, Zhang J, Griffith M, Cao X, Musaro A, Ruel M, Suuronen EJ (2011) A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle. Eur Cell Mater 22:109–123

    Google Scholar 

  154. Holbrook RD, Rykaczewski K, Staymates ME (2014) Dynamics of silver nanoparticle release from wound dressings revealed via in situ nanoscale imaging. J Mater Sci Mater Med 25(11):2481–2489. doi:10.1007/s10856-014-5265-6

    Article  Google Scholar 

  155. Gunasekaran T, Nigusse T, Dhanaraju MD (2011) Silver nanoparticles as real topical bullets for wound healing. J Am Coll Clin Wound Spec 3(4):82–96. doi:10.1016/j.jcws.2012.05.001

    Article  Google Scholar 

  156. Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 1(4):441–449

    Article  Google Scholar 

  157. Chereddy KK, Coco R, Memvanga PB, Ucakar B, des Rieux A, Vandermeulen G, Preat V (2013) Combined effect of PLGA and curcumin on wound healing activity. J Control Release 171(2):208–215. doi:10.1016/j.jconrel.2013.07.015

    Article  Google Scholar 

  158. Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine RA, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S, Friedman JM, Nosanchuk JD, Friedman AJ (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11(1):195–206. doi:10.1016/j.nano.2014.09.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay E. Fitzpatrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antonyshyn, J.A., Fitzpatrick, L.E. (2016). Stem Cell and Stem Cell-Derived Molecular Therapies to Enhance Dermal Wound Healing. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics