Modulational Instability and Rogue Waves in Shallow Water Models

  • R. GrimshawEmail author
  • K. W. Chow
  • H. N. Chan
Part of the Lecture Notes in Physics book series (LNP, volume 908)


It is now well known that the focussing nonlinear Schrödinger equation allows plane waves to be modulationally unstable, and at the same time supports breather solutions which are often invoked as models for rogue waves. This suggests a direct connection between modulation instability and the existence of rogue waves. In this chapter we review this connection for a suite of long wave models, such as the Korteweg-de Vries equation, the extended Korteweg-de Vries (Gardner) equation, often used to describe surface and internal waves in shallow water, a Boussinesq equation and, also a coupled set of Korteweg-de Vries equations.


Modulation Instability Rogue Wave Darboux Transformation Linear Dispersion Relation Breather Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Partial financial support has been provided by the Research Grants Council through contract HKU 711713E.


  1. 1.
    Ablowitz, M., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)CrossRefzbMATHGoogle Scholar
  2. 2.
    Agrawal, G.P.: Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–883 (1987)CrossRefADSGoogle Scholar
  3. 3.
    Akhmediev, N., Pelinovsky, E.: Editorial, introductory remarks on discussion & debate: rogue waves—towards a unifying concept? Eur. Phys. J. 185, 1–4 (2010) [Special Topics]Google Scholar
  4. 4.
    Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrodinger equation. Phys. Rev. E 80, 026601 (2009)CrossRefADSGoogle Scholar
  5. 5.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Bandelow, U., Akhmediev, N.: Persistence of rogue waves in extended nonlinear Schrodinger equations: integrable Sasa-Satsuma case. Phys. Lett. A 376, 1558–1561 (2012)CrossRefADSzbMATHGoogle Scholar
  7. 7.
    Baronio, F., Conforti, M., Degaperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)CrossRefADSGoogle Scholar
  8. 8.
    Chabchoub, A., Vitanov, N., Hoffmann, N.: Experimental evidence for breather type dynamics in freak waves. Proc. Appl. Math. Mech. 10, 495–496 (2010)CrossRefGoogle Scholar
  9. 9.
    Chabchoub, A., Hoffmann, N., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N.: Super rogue raves: observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012)Google Scholar
  11. 11.
    Chabchoub, A., Hoffmann, N., Onorato, M., Genty, G., Dudley, J.M., Akhmediev, N.: Hydrodynamic supercontinuum. Phys. Rev. Lett. 111, 054104 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J., Ding, E.: Rogue wave modes for a derivative nonlinear Schrodinger model. Phys. Rev. E 89, 032914 (2014)CrossRefADSGoogle Scholar
  13. 13.
    Chen, S.: Twisted rogue-wave pairs in the Sasa-Satsuma equation. Phys. Rev. E 88, 023202 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Chen, Y., Liu, P.L.-F.: On interfacial waves over random topography. Wave Motion 24, 169–184 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, S., Song, L.Y.: Rogue waves in coupled Hirota systems. Phys. Rev. E 87, 0321910 (2013)Google Scholar
  16. 16.
    Chen, S., Soto-Crespo, J.M., Grelu, P.: Dark three-sister rogue waves in normally dispersive optical fibers with random birefringence. Opt. Express 22, 27632–27642 (2014)CrossRefADSGoogle Scholar
  17. 17.
    Chow, K.W.: Periodic waves for a system of coupled, higher order nonlinear Schrödinger equations with third order dispersion. Phys. Lett. A 308, 426–431 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  18. 18.
    Chow, K.W., Grimshaw, R., Ding, E.: Interactions of breathers and solitons in the extended Korteweg de Vries equation. Wave Motion 43, 158–166 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Degasperis, A., Lombardo S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)CrossRefADSGoogle Scholar
  20. 20.
    Dodd, R., Fordy, A.: On the integrability of a system of coupled KdV equations. Phys. Lett. A 89, 168–170 (1982)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755–764 (2014)CrossRefADSGoogle Scholar
  22. 22.
    Dysthe, K., Krogstad, H.E., Muller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Grimshaw, R.: Internal solitary waves. In: Grimshaw, R. (ed.) Environmental Stratified Flows, pp. 1–27. Kluwer, Boston (2001)Google Scholar
  24. 24.
    Grimshaw, R., Tovbis, A.: Rogue waves: analytical predictions. Proc. R. Soc. 469, 20130094 (2013)CrossRefADSGoogle Scholar
  25. 25.
    Grimshaw, R., Pelinovsky, D., Pelinovsky E.: Wave group dynamics in weakly nonlinear long-wave models. Phys. D 159, 35–52 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Grimshaw, R., Pelinovsky E., Talipova, T., Sergeeva, A.: Rogue internal waves in the ocean: long wave model. Eur. Phys. J. 185, 195–208 (2010) [Special Topics]Google Scholar
  27. 27.
    Grimshaw, R.H.J., Hunt, J.C.R., Chow, K.W.: Changing forms and sudden smooth transitions of tsunami waves. J. Ocean Eng. Mar. Energy 1 (2), 145 – 156 (2015)CrossRefGoogle Scholar
  28. 28.
    Guo, G., Ling, L., Liu, Q.P.: Higher-order solutions and generalized Darboux transformations of derivative nonlinear Schrodinger equations. Stud. Appl. Math. 130, 317–344 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    He, J., Guo, L., Zhang, Y., Chabchoub, A.: Theoretical and experimental evidence of non-symmetric doubly localized rogue waves. Proc. R. Soc. A 470, 20140318 (2014)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Hirota, R.: Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. Math. Phys. 14, 810–814 (1973)MathSciNetCrossRefADSzbMATHGoogle Scholar
  31. 31.
    Hirota, R.: Reduction of soliton equations in bilinear form. Phys. D 18, 161–170 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 85, 8–9 (1981)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue waves in the ocean. In: Advances in Geophysical and Environmental Mechanics and Mathematics, vol. 14. Springer, Berlin (2009)Google Scholar
  34. 34.
    Li, C., He, J., Porsezian, K.: Rogue waves of the Hirota and the Maxwell-Bloch equations. Phys. Rev. E. 87, 012913 (2013)CrossRefADSGoogle Scholar
  35. 35.
    Oevel, W.: On the integrability of the Hirota-Satsuma system. Phys. Lett. A 94, 404–407 (1983)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey-Stewartson II equation. J. Phys. A Math. Theor. 46, 105202 (2013)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Osborne, A.R.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Elseveier, San Diego (2010)zbMATHGoogle Scholar
  39. 39.
    Park, Q.H., Shin, H.J.: Higher order nonlinear optical effects on polarized dark solitons. Opt. Commun. 178, 233–244 (2000)CrossRefADSGoogle Scholar
  40. 40.
    Pelinovsky, D.E., Grimshaw, R.H.J.: Structural transformation of eigenvalues for a perturbed algebraic soliton potential. Phys. Lett. A 229, 165–172 (1997)MathSciNetCrossRefADSzbMATHGoogle Scholar
  41. 41.
    Peregrine, D.H.: Water waves, nonlinear Schrodinger equations and their solutions. J. Aust. Math. Soc. B 25, 16–43 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Perelman, T.L., Fridman, A.X., Elyashevich, M.M.: A modified Korteweg-de Vries equation in electrohydrodynamics. J. Exp. Theor. Phys. 39, 643–646 (1974)MathSciNetADSGoogle Scholar
  43. 43.
    Shan, S., Li, C., He, J.: On rogue wave in the Kundu-DNLS equation. Commun. Nonlinear Sci. Numer. Simul. 18, 3337–3349 (2013)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Shemer, L., Alperovich, L.: Peregrine breather revisited. Phys. Fluids 25, 051701 (2013)CrossRefADSGoogle Scholar
  45. 45.
    Shrira, V.I., Georgiaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves. J. Eng. Math. 67, 478–509 (2010)CrossRefGoogle Scholar
  46. 46.
    Slunyaev, A.V.: Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. J. Exp. Theor. Phys. 92, 529–534 (2001)CrossRefADSGoogle Scholar
  47. 47.
    Slunyaev, A.V., Pelinovsky, E.N.: Dynamics of large-amplitude solitons. J. Exp. Theor. Phys. 89 173–181 (1999)CrossRefADSGoogle Scholar
  48. 48.
    Vishnu, P.N., Senthilvelan, M.: Generalized Darboux transformation and n-th order rogue wave solution of a general coupled nonlinear Schrodinger equations. Commun. Nonlinear Sci. Numer. Simul. 20, 401–420 (2015)MathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Vishnu, P.N., Senthilvelan, M., Lakshmanan, M.: Akhmediev breathers, Ma solitons and general breathers from rogue waves: a case study in the Manakov system. Phys. Rev. E 88, 022918 (2013)CrossRefADSGoogle Scholar
  50. 50.
    Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation. Phys. Rev. E 87, 053202 (2013)CrossRefADSGoogle Scholar
  51. 51.
    Zakharov, V., Gelash, A.: Freak waves as a result of modulation instability. Proc. IUTAM 9, 165–175 (2013)CrossRefGoogle Scholar
  52. 52.
    Zhao, L., Li, S.C., Ling, L.: Rational W-shaped solitons on a continuous wave background in the Sasa-Satsuma equation. Phys. Rev. E 89, 023210 (2014)CrossRefADSGoogle Scholar
  53. 53.
    Zhao, L., Yang, Y.Z., Ling, L.: Localized waves on continuous wave background in a two-mode nonlinear fiber with high-order effects. J. Phys. Soc. Jpn. 83, 104401 (2014)CrossRefADSGoogle Scholar
  54. 54.
    Zhaqilao, Z.: On N-th order rogue wave solution to the generalized nonlinear Schrodinger equation. Phys. Lett. A 377, 855–859 (2013)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity College LondonLondonUK
  2. 2.Department of Mechanical EngineeringUniversity of Hong KongPokfulamHong Kong

Personalised recommendations