Skip to main content

Modulational Instability in Equations of KdV Type

  • Chapter
Book cover New Approaches to Nonlinear Waves

Part of the book series: Lecture Notes in Physics ((LNP,volume 908))

Abstract

It is a matter of experience that nonlinear waves in a dispersive medium, propagating primarily in one direction, may appear periodic in small space and time scales, but their characteristics—the amplitude, the phase, the wave number, etc.—slowly vary in large space and time scales. In the 1960s, Whitham developed an asymptotic (WKB) method to study the effects of small “modulations” on nonlinear dispersive waves. Since then, there has been a great deal of work aiming at rigorously justifying the predictions from Whitham’s formal theory. We discuss some recent advances in the mathematical understanding of the dynamics, in particular, the instability, of slowly modulated waves for equations of KdV type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(\mathcal{O}(1)\) terms cancel out thanks to the definition of \((a_{0},E_{0},c_{0})\), and hence the leading order term is \(\mathcal{O}(\varepsilon )\).

  2. 2.

    The requirement that the perturbation be integrable is not the only choice possible. Other natural candidates of classes of perturbations include periodic perturbations with fundamental period nT for some \(n = 1, 2, 3,\ldots\). While such periodic classes of perturbations are natural from a variational viewpoint, they may impose artificial constraints on the physical problem. As we will see below, the class of localized, i.e. integrable on the line, perturbations includes information about all quasi-periodic perturbations.

  3. 3.

    Here we ignore issues of well-posedness of Eq. (4.1) to such initial data.

  4. 4.

    In general, spectral stability does not imply linear stability, as is familiar from the ODE theory. Nevertheless, spectral instability often does imply linear (and nonlinear) instability.

  5. 5.

    Here, we take the convention that the left hand side is zero when k = 0.

  6. 6.

    Indeed, this formula for D was derived in [12] using a direct spectral perturbation expansion, a method equivalent to that described in Sect. 4.4.2.

  7. 7.

    Following [41], the projections here are slightly re-scaled from those of Sect. 4.4. Here we use \(M_{\xi }:= \left [\langle \psi _{i},L_{\xi }\phi _{j}\rangle /\langle \psi _{i},\phi _{j}\rangle _{L_{\mathrm{per}}^{2}([0,T])}\right ]_{i,j=1,2,3}\) and similarly for the projection of the identity.

  8. 8.

    The condition α > 1∕2 is an artifact of the corresponding existence theory. See [45] for details.

References

  1. Amik, C.J., Toland, J.F.: Uniqueness and related analytic properties for the Benjamin-Ono equation: a nonlinear Neumann problem in the plane. Acta Math. 167, 107–126 (1991)

    Article  MathSciNet  Google Scholar 

  2. Anderson, D., Lisak, M.: Modulational instability of coherent optical-fiber transmission signals. Opt. Lett. 9, 468–470 (1984)

    Article  ADS  Google Scholar 

  3. Barker, B., Johnson, M.A., Noble, P., Rodrigues, L.M., Zumbrun, K.: Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation. Phys. D. 258, 11–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benjamin, T.B.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–592 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  5. Benjamin, T.B., Bridges, T.J.: Reappraisal of the Kelvin-Helmholtz problem, I. Hamiltonian structure. J. Fluid Mech. 333, 301–325 (1997)

    MathSciNet  ADS  MATH  Google Scholar 

  6. Benjamin, T.B., Bridges, T.J.: Reappraisal of the Kelvin-Helmholtz problem, II. Interaction of the Kelvin-Helmholtz, superharmonic and Benjamin-Feir instabilities. J. Fluid Mech. 333, 327–373 (1997)

    Google Scholar 

  7. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water I. Theory. J. Fluid Mech. 27, 417–430 (1967)

    Article  ADS  MATH  Google Scholar 

  8. Benney, D.J., Newell, A.C.: The propagation of nonlinear wave envelopes. J. Math. Phys. 46, 133–139 (1967)

    MathSciNet  MATH  Google Scholar 

  9. Benzoni-Gavage, S., Noble, P., Rodrigues, L.M.: Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids. J. Nonlinear Sci. 24, 711–768 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bridges, T.J., Mielke, A.: A proof of the Benjamin-Feir instability. Arch. Ration. Mech. Anal. 133, 145–198 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bridges, T.J., Rowlands, G.: Instability of spatially quasi-periodic states of the Ginzburg-Landau equation. Proc. R. Soc. Lond. Ser. A. 444, 347–362 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Bronski, J.C., Hur, V.M.: Modulational instability and variational structure. Stud. Appl. Math. 132, 285–331 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bronski, J.C., Johnson, M.A.: The modulational instability for a generalized Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 197, 357–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bronski, J.C., Segev, M., Weinstein, M.: Mathematical Frontiers in optical solitons. Proc. Natl. Acad. Sci. 98, 12872–12873 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  15. Bronski, J.C., Johnson, M.A., Kapitula, T.: An index theorem for the stability of periodic travelling waves of Korteweg-de Vries type. Proc. R. Soc. Edinb. Sect. A 141, 1141–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bottman, N., Deconinck, B.: KdV cnoidal waves are spectrally stable. Discrete Contin. Dyn. Syst. 25, 1163–1180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boussinesq, M.J.: Essai sur la théorie des eaux courants. Mémoirs présentés par divers savants á l’Acad. des Sciences Inst. France (série 2) 23, 1–680 (1877)

    Google Scholar 

  18. Cardaliaguet, P., Da Lio, F., Forcadel, N., Monneau, R.: Dislocation dynamics: a non-local moving boundary. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds.) Free Boundary Problems. International Series of Numerical Mathematics, vol. 154, pp. 125–135. Birkhäuser, Basel (2007)

    Google Scholar 

  19. Chicone, C.: Ordinary Differential Equations with Applications, 2nd edn. Texts in Applied Mathematics, vol. 34. Springer, New York (2006)

    Google Scholar 

  20. Chirilus-Bruckner, M., Düll, W.-P., Schneider, G.: Validity of the KdV equation for the modulation of periodic traveling waves in the NLS equation. J. Math. Anal. Appl. 414(1), 166–175 (2014)

    Article  MathSciNet  Google Scholar 

  21. Collet, P., Eckmann, J.-P.: The time dependent amplitude equation for the Swift-Hohenberg problem. Commun. Math. Phys. 132, 139–152 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  23. Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Usp. Mat. Nauk. 44, 29–98 (1989)

    MathSciNet  Google Scholar 

  24. Düll, W.-P., Schneider, G.: Validity of Whitham’s equations for the modulation of periodic traveling waves in the NLS equation. J. Nonlinear Sci. 19(5), 453–466 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Ehrnström, M., Kalisch, H.: Traveling waves for the Whitham equation. Diff. Integr. Equat. 22, 1193–1210 (2009)

    MATH  Google Scholar 

  26. Ehrnström, M., Kalisch, H.: Gobal bifurcation in the Whitham equation. Math. Model. Nat. Phenom. 8, 13–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ercolani, N., Forest, M.G., McLaughlin, D.W., Montgomery, R.: Hamiltonian structure for the modulation equations of a sine-Gordon wavetrain. Duke Math. J. 55, 949–983 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feir, J.E.: Discussion: some results from wave pulse experiments. Proc. R. Soc. Lond. Ser. A 299, 54–58 (1967)

    Article  ADS  Google Scholar 

  29. Fermi, E., Pasta, J.R., Ulam, S.: Studies of Nonlinear Problems, I. Report LA-1940. Los Alamos Scientific Laboratory, Los Alamos (1955)

    Google Scholar 

  30. Flaschka, H., Forest, M.G., McLaughlin, D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation. Commun. Pure Appl. Math. 33, 739–784 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Frank, R., Lenzmann, E.: Uniqueness and nondegeneracy of ground states for \((-\varDelta )^{s}Q + Q - Q^{\alpha +1} = 0\) in \(\mathbb{R}\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fuerst, R.A., Baboiu, D.-M., Lawrence, B., Torruellas, W.E., Stegeman, G.I., Trillo, S., Wabnitz, S.: Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear medium. Phys. Rev. Lett. 78, 2756–2759 (1997)

    Article  ADS  Google Scholar 

  33. Gallay, T., Hǎrǎgus, M.: Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Diff. Equat. 19, 825–865 (2007)

    Article  MATH  Google Scholar 

  34. Gallay, T., Hărăguş, M.: Stability of small periodic waves for the nonlinear Schrödinger equation. J. Diff. Equat. 234, 544–581 (2007)

    Article  ADS  MATH  Google Scholar 

  35. Grava, T.: From the solution of the Tsarev system to the solution of the Whitham equations. Math. Phys. Anal. Geom. 4, 65–96 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grimshaw, R.: Internal solitary waves. In: Grimshaw, R. (ed.) Environmental Stratified Flows, pp. 1–29. Kluwer, Boston (2002)

    Google Scholar 

  37. Hǎrǎguş, M., Kapitula, T.: On the spectra of periodic waves for infinite-dimensionalHamiltonian systems. Phys. D 237, 2649–2671 (2008)

    Article  MathSciNet  Google Scholar 

  38. Haragus, M., Scheel, A.: Finite-wavelength stability of capillary-gravity solitary waves. Commun. Math. Phys. 225, 487–521 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Hasegawa, A.: Generation of a train of soliton pulses by induced modulational instability in optical fibers. Opt. Lett. 9 (1984)

    Google Scholar 

  40. Hur, V.M.: On the formation of singularities for surface water waves. Commun. Pure Appl. Anal. 11, 1465–1474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hur, V.M., Johnson, M.A.: Modulational instability in the Whitham equation for water waves. Stud. Appl. Math. 134, 120–143 (2015)

    Article  MathSciNet  Google Scholar 

  42. Hur, V.M., Johnson, M.A.: Stability of periodic traveling waves for nonlinear dispersive equations. Preprint

    Google Scholar 

  43. Hur, V.M., Lin, Z.: Unstable surface waves in running water. Commun. Math. Phys. 282, 733–796 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Johnson, M.A.: On the stability of periodic solutions of the generalized Benjamin-Bona-Mahony equation. Phys. D 239, 1892–1908 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Johnson, M.A.: Stability of small periodic waves in fractional KdV type equations. SIAM J. Math. Anal. 45, 2597–3228 (2013)

    Article  MathSciNet  Google Scholar 

  46. Johnson, M.A., Zumbrun, K.: Rigorous justification for the generalized Korteweg-de Vries equation. Stud. Appl. Math. 125, 69–89 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Johnson, M.A., Zumbrun, K., Bronski, J.C.: On the modulation equations and stability of periodic gKdV waves via Bloch decompositions. Phys. D 239, 2037–2065 (2010)

    MathSciNet  Google Scholar 

  48. Johnson, M.A., Noble, P., Rodrigues, L.M., Zumbrun, K.: Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability. Arch. Ration. Mech. Anal. 207, 693–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Johnson, M.A., Noble, P., Rodrigues, L.M., Zumbrun, K.: Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation. Arch. Ration. Mech. Anal. 207, 669–692 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Johnson, M.A., Noble, P., Rodrigues, L.M., Zumbrun, K.: Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations. Invent. Math. 197, 115–213 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Johnson, M.A., Noble, P., Rodrigues, L.M., Zumbrun, K.: Spectral stability of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation in the Korteweg-de Vries limit. Trans. Am. Math. Soc. 367, 2159–2212 (2015)

    Article  MathSciNet  Google Scholar 

  52. Joseph, R.I.: Solitary waves in a finite depth fluid. J. Phys. A 10, 225–227 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  53. Kato, T.: Perturbation Theory for Linear Pperators. Springer, Berlin (1985)

    Google Scholar 

  54. Kirrmann, P., Schneider, G., Mielke, A.: The validity of modulation equations for extended systems with cubic nonlinearities. Proc. R. Soc. Edinb. Sect. A 122, 85–91 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Korteweg, D., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–435 (1895)

    Article  MATH  Google Scholar 

  56. Krichever, I.M.: Whitham theory for integrable systems and topological quantum field theories. In: Fröhlich, J., ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds.) New Symmetry Principles in Quantum Field Theory (Cargèse 1991). Plenum, New York (1992)

    Google Scholar 

  57. Krylov, D., Leng, L., Bergman, K., Bronski, J.C., Kutz, J.N.: Observation of the breakup of a prechirped N-soliton in an optical fiber. Opt. Lett. 24, 1191–1193 (1999)

    Article  ADS  Google Scholar 

  58. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg-de Vries equation. I, II, III. Commun. Pure Appl. Math. 36, 253–290, 571–593, 809–829 (1983)

    Google Scholar 

  59. Lighthill, M.J.: Contributions to the theory of waves in non-linear dispersive systems. IMA J. Appl. Math. 1, 269–306 (1965)

    Article  MathSciNet  Google Scholar 

  60. Noble, P., Rodrigues, L.M.: Whitham’s modulation equations and stability of periodic wave solutions of the Korteweg-de Vries-Kuramoto-Sivashinsky equation. Indiana Univ. Math. J. 62, 753–783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)

    Article  ADS  Google Scholar 

  62. Ostrovsky, L.A.: Propagation of wave packets in nonlinear dispersive medium. Sov. J. Exp. Theor. Phys. 24, 797–800 (1967)

    ADS  Google Scholar 

  63. Pelinovsky, D.E.: Intermediate nonlinear Schrödinger equation for internal waves in a fluid of finite depth. Phys. Lett. A 197, 401–406 (1995)

    Article  ADS  Google Scholar 

  64. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic [Harcourt Brace Jovanovich Publishers], New York (1978)

    Google Scholar 

  65. Schaaf, R.: A class of hamiltonian systems with increasing periods. J. Reine Angew. Math. 363, 96–109 (1985)

    MathSciNet  MATH  Google Scholar 

  66. Schamel, H.: A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9, 377–387 (1973)

    Article  ADS  Google Scholar 

  67. Soljacic, M., Segev, M., Coskun, T., Christodoulides, D., Vishwanath, A.: Modulational instability of incoherent beams in noninstantaneous nonlinear media. Phys. Rev. Lett. 84, 467 (2000)

    Article  ADS  Google Scholar 

  68. Stanford, N., Kodama, K., Carter, J.D., Kalisch, H.: Stability of traveling wave solutions to the Whitham equation. Phys. Lett. A 378, 2100–2107 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  69. Tai, K., Hasegawa, A., Tomita, A.: Observation of the modulational instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986)

    Article  ADS  Google Scholar 

  70. Tai, K., Tomita, A., Jewell, J.L., Hasegawa, A.: Generation of subpicosecond solitonlike optical pulses at 0.3THz repetition rate by induced modulational instability. Appl. Phys. Lett. 49, 236–238 (1986)

    Google Scholar 

  71. Tian, F.-R., Ye, J.: On the Whitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 52, 655–692 (1999)

    Article  MathSciNet  Google Scholar 

  72. Whitham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Ser. A 283, 238–261 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Whitham, G.B.: Non-linear dispersion of water waves. J. Fluid Mech. 27, 399–412 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience [John Wiley & Sons], New York (1974)

    Google Scholar 

  75. Zakharov, V.E.: Instability of self-focusing of light. Sov. J. Exp. Theor. Phys. 26, 994 (1968)

    ADS  Google Scholar 

  76. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  ADS  Google Scholar 

  77. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Phys. D 238, 540–548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JCB is supported by the National Science Foundation grant DMS-1211364. VMH is supported by the National Science Foundation grant CAREER DMS-1352597 and an Alfred P. Sloan Foundation Fellowship. MAJ is supported by the National Science Foundation grant DMS-1211183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew A. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bronski, J.C., Hur, V.M., Johnson, M.A. (2016). Modulational Instability in Equations of KdV Type. In: Tobisch, E. (eds) New Approaches to Nonlinear Waves. Lecture Notes in Physics, vol 908. Springer, Cham. https://doi.org/10.1007/978-3-319-20690-5_4

Download citation

Publish with us

Policies and ethics