Advertisement

Multimodal Feedback for Balance Rehabilitation

  • Bruce J. P. MortimerEmail author
  • Braden J. McGrath
  • Greg R. Mort
  • Gary A. Zets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9177)

Abstract

This paper describes development of an activity based, multimodal balance rehabilitation training device. Various sensors can be used, including a force plate, inertial sensors, and depth sensing cameras, and various combinations of visual, auditory and tactile feedback can be configured depending on the rehabilitation task and activity. Tactile feedback is presented via a lightweight belt that is worn on the torso. Generally, visual feedback is only needed at the start of rehabilitation training (task orientation) while tactile feedback may be used to augment balance control. Tactile feedback can be configured as a cue that certain movement targets or limits have been reached or as an immediate indicator of the variance in postural sway. Tactile feedback allows the subject to naturally concentrate on the functional rehabilitation task, and is less reliant on visual or verbal cues.

Keywords

Balance Rehabilitation Tactile feedback 

References

  1. 1.
    Herdman, S.: Role of the Vestibular System in Postural Control. In: Herdman, S. (ed.) Vestibular Rehabilitation, 3rd edn. FA Davis Company, Philadelphia (2007)Google Scholar
  2. 2.
    Shumway-Cook, A., Woollacott, M.: Motor Learning and Recovery of Function. In: Motor Control, 2nd edn. Lippincott Williams and Wilkins, Philadelphia (2001)Google Scholar
  3. 3.
    Han, B.I., Song, H.S., Kim, J.S.: Vestibular rehabilitation therapy: review of indications, mechanisms, and key exercises. J. Clin. Neurol. (Seoul, Korea) 7(4), 184–196 (2011)CrossRefGoogle Scholar
  4. 4.
    Hillier, S.L., McDonnell, M.: Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Clinical Otolaryngology : Journal of ENT-UK; Official Journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery 36, 248–249 (2011)CrossRefGoogle Scholar
  5. 5.
    Rupert, A.H., Mateczun, A., Guedry, F.E.: Maintaining spatial orientation awareness. Situation Awareness in Aerospace Operations. Copenhagen, Denmark. AGARD-CP-478, pp. 21-1–21-5 (1990)Google Scholar
  6. 6.
    Allum, J.H.J.: Method and apparatus for the diagnosis and rehabilitation of balance disorders, US patent 6,063,046Google Scholar
  7. 7.
    Hegeman, J., Honegger, F., Kupper, M., Allum, J.H.J.: The balance control of bilateralperipheral vestibular loss subjects and its improvement with auditory prosthetic feedback. J. Vest. Res. 15, 109–117 (2005)Google Scholar
  8. 8.
    Kentala, E., Vivas, J., Wall, C.: Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann. Otol. Rhinol. Laryngol. 112(5), 404–409 (2003)CrossRefGoogle Scholar
  9. 9.
    Chiari, L., Dozza, M., Cappello, A., Horak, F.B., Macellari, V., Giansanti, D.: Audio-biofeedback for balance improvement: an accelerometry-based system. IEEE Trans. Biomed. Eng. 52(12), 2108–2111 (2005)CrossRefGoogle Scholar
  10. 10.
    Bach-y-Rita, P.: Tactile sensory substitution studies. Ann. NY Acad. Sci. 1013, 83–91 (2004)CrossRefGoogle Scholar
  11. 11.
    Horak, F.B., Macpherson, J.M.: Postural equilibrium and orientation. In: Rowell, R.B., Shepherd, J.T. (eds.) Handbook of Physiology, pp. 255–292. American Physiology Society, Oxford University Press, New York (1996)Google Scholar
  12. 12.
    Huxham, F., Goldie, P.A., Patla, A.E.: Theoretical considerations in balance assessment. Aust. J. Physiotherapy 47, 89–100 (2001)CrossRefGoogle Scholar
  13. 13.
    Jeka, J., Olie, K., Schoner, G., Dijkstra, T., Henson, E.: Position and velocity coupling of postural sway to somatosensory drive. J. Neurol. 79, 1661–1674 (1998)Google Scholar
  14. 14.
    Kolb, B., Gibb, R., Robinson, T.: Brain plasticity and behavior. Curr. Dir. Psychol. Sci. 12, 1–5 (2003)CrossRefGoogle Scholar
  15. 15.
    Hanson, J.V.M., Whitaker, D., Heron, J.: Preferential processing of tactile events under conditions of divided attention. NeuroReport 20(15), 1392–1396 (2012)CrossRefGoogle Scholar
  16. 16.
    Van Erp, J.B.F.: Validation of Principles for Tactile Navigation Displays. In: Proceedings of the 50th annual meeting of the Human Factors and Ergonomics Society (2006)Google Scholar
  17. 17.
    Mortimer, B., Zets, G., Mort, G., Shovan, C.: Implementing effective tactile symbology for orientation and navigation. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part III, HCII 2011. LNCS, vol. 6763, pp. 321–328. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Fukuoka, Y., Tanaka, K., Ishida, A., Minamitani, H.: Characteristics of visual feedback in postural control during standing. IEEE Trans. Rehabil. Eng. 7(4), 427–434 (1999)CrossRefGoogle Scholar
  19. 19.
    Scherer, M.R., Burrows, H., Pinto, R., Littlefield, P., French, L.M., Tarbett, A.K., Schubert, M.C.: Evidence of central and peripheral vestibular pathology in blast-related traumatic brain injury. Otol Neurotol 32(4), 571–580 (2011)CrossRefGoogle Scholar
  20. 20.
    Lawson, B.D., Rupert, A.H.: Vestibular aspects of head injury and recommendations for evaluation and rehabilitation following exposure to severe changes in head velocity or ambient pressure. In: Turan, O., Bos, J., Stark, J., Colwell, J. (eds.) Peer-Reviewed Proceedings of the International Conference on Human Performance at Sea (HPAS), University of Strathclyde, Glasgow, U.K., 16–18 June, pp. 367–380 (2010). ISBN: 978-0-947649-73-9Google Scholar
  21. 21.
    Dozza, M., Horak, F.B., Chiari, L.: Auditory biofeedback substitutes for loss of sensory information in maintaining stance. Exp. Brain Res. 178(1), 37–48 (2007)CrossRefGoogle Scholar
  22. 22.
    Carlile, S., Leong, P., Hyams, S.: The nature and distribution of errors in sound localization by human listeners. Hearing Res. 114, 179–196 (1997)CrossRefGoogle Scholar
  23. 23.
    Winter, D.A.: Human balance and posture control during standing and walking. Gait and Posture 3, 193–214 (1995)CrossRefGoogle Scholar
  24. 24.
    Wall, C., Merfeld, D.M., Rauch, S.D., Black, F.O.: Vestibular prostheses: the engineering and biomedical issues. J. Vestib. Res. 12(2–3), 95–113 (2002)Google Scholar
  25. 25.
    Wrisley, D.M., Marchetti, G.F., Kuharsky, D.K., Whitney, S.L.: Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys. Ther. 84(10), 906–918 (2004)Google Scholar
  26. 26.
    Cawthorne, T.: The Physiological Basis for Head Exercises. J. Chartered Soc. Physiotherapy 30, 106 (1944)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bruce J. P. Mortimer
    • 1
    Email author
  • Braden J. McGrath
    • 1
  • Greg R. Mort
    • 1
  • Gary A. Zets
    • 1
  1. 1.Engineering Acoustics, Inc.CasselberryUSA

Personalised recommendations