Advertisement

A Goal- and Context-Driven Approach in Mobile Period Tracking Applications

  • Richard A. BretschneiderEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9177)

Abstract

Over the past few years the interest in period tracking apps increased, which represent a sub-genre of quantified self apps in women health. They are available in a variety of complexity levels ranging from simple menstruation diaries up to applications with complex fertility calculation algorithms. The goal of this paper is to propose an approach for a period tracking app with an adaptive user interface that takes the users goal and context into account. Our research focusses on the motivations to use a period tracker, the questions that users have regarding their cycle data and how a quantified self app could help in answering these questions.

Keywords

Self-tracking Period tracking Context User experience Personalization User monitoring Quantified self 

References

  1. 1.
    Bartlett, F.C.: Remembering : A Study in Experimental and Social Psychology. Cambridge University Press, Cambridge (1995). Originally published: London: Cambridge U.P. (1967)Google Scholar
  2. 2.
    Cena, F., Lombardi, I., Rapp, A., Sarzotti, F.: Self-monitoring of emotions: a novel personal informatics solution for an enhanced self-reporting. In: UMAP Workshops (2014)Google Scholar
  3. 3.
    Choe, E.K., Lee, N.B., Lee, B., Pratt, W., Kientz, J.A.: Understanding quantified-selfers’ practices in collecting and exploring personal data. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2014), pp. 1143–1152. ACM, New York (2014)Google Scholar
  4. 4.
    Bundeszentrale fuer gesundheitliche Aufklaerung. Unsicher: Knaus-ogino-methode, koitus interruptus und stillen, February 2015. http://www.familienplanung.de/verhuetung/verhuetungsmethoden/unsichere-methoden/. Accessed 5 Feb 2015
  5. 5.
    Laird, S.: How smartphones are changing health care, September 2012. http://mashable.com/2012/09/26/smartphones-health-care-infographic/. Accessed 5 Feb 2015
  6. 6.
    Li, I., Dey, A., Forlizzi, J.: A stage-based model of personal informatics systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (CHI 2010), pp. 557–566. ACM, New York (2010)Google Scholar
  7. 7.
    Li, I., Dey, A., Forlizzi, J.: Understanding my data, myself: Supporting self-reflection with ubicomp technologies. In: Proceedings of the 13th International Conference on Ubiquitous Computing(UbiComp 2011), pp. 405–414. ACM, New York (2011)Google Scholar
  8. 8.
    Raith-Paula, E., et al.: Natürliche Familienplanung heute: Modernes Zykluswissen für Beratung und Anwendung. Springer, Berlin Heidelberg (2013)Google Scholar
  9. 9.
    Rooksby, J., Rost, M., Morrison, A., Chalmers, M.C.: Personal tracking as lived informatics. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems (CHI 2014), pp. 1163–1172. ACM, New York (2014)Google Scholar
  10. 10.
    Rötzer, J.: Natürliche Empfängnisregelung: der partnerschaftliche Weg - die sympto-thermale Methode. Herder, New York (1996)Google Scholar
  11. 11.
    Schnell, R., Hill, P.B., Esser, E.: Methoden der empirischen Sozialforschung. Oldenbourg Wissenschaftsverlag, Munich (2011)Google Scholar
  12. 12.
    Singer, K.: The Garden of Fertility. Penguin Group, New York (2004)Google Scholar
  13. 13.
    Wortham, J.: Our bodies, our apps: For the love of period-trackers, January 2014. http://bits.blogs.nytimes.com/2014/01/23/our-bodies-our-apps-for-the-love-of-period-trackers/. Accessed 5 Feb 2015

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.TOMORROW FOCUS News+ GmbHCologneGermany

Personalised recommendations