Advertisement

A Study on Within-Subject Factors for Visually Induced Motion Sickness by Using 8K Display

Through Measurement of Body Sway Induced by Vection While Viewing Images
  • Hiromu IshioEmail author
  • Tatsuya Yamakawa
  • Akihiro Sugiura
  • Kazuki Yoshikawa
  • Takehito Kojima
  • Shigeru Terada
  • Kunihiko Tanaka
  • Masaru Miyao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9176)

Abstract

Visually induced self-motion perception (vection) is one of the phenomena related to human vision. It often emerges as a precursory symptom of motion sickness while viewing moving images. Employing a large number of subjects in a wide range of age groups and using a large-scale 8 K display, we investigated within-subject factors which can influence a sense of vection. We report some results of statistical analyses of vection-induced body sway which occurred when the subjects viewed rotating images on the display. Then we find that our fundamental study may provide useful information in order to set safety guidelines for large-scale ultra-high-definition displays such as 4K and 8K which are becoming popular in public use.

Keywords

Within-subject factor Visually induced motion sickness 8K display Body sway Vection 

Notes

Acknowledgements

This work was partially supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (B)) Grant Number 24300046.

References

  1. 1.
    For overview of researches and developments in ultra-realistic communication-related technologies, the home page of Ultra-Realistic Communications Forum (URCF). http://www.urcf.jp/english/
  2. 2.
    Standards for Image Safety to Be Studied by Advanced Industrial Science and Technology (AIST). http://www.aist.go.jp/aist_e/latest_research/2004/20040203/20040203.html
  3. 3.
    Reason, J.T., Brand, J.J.: Motion Sickness, pp. 103–128. Academic Press, New York (1975)Google Scholar
  4. 4.
    Treisman, M.: Motion sickness: an evolutionary hypothesis. Science 197, 493–495 (1977)CrossRefGoogle Scholar
  5. 5.
    Nalivaiko, E., Rudd, J.A., So, R.H.Y.: Motion sickness, nausea and thermoregulation: the “Toxic” hypothesis. Temperature 1, 164–171 (2014)CrossRefGoogle Scholar
  6. 6.
    Riccio, G.E., Stoffregen, T.A.: An Ecological theory of motion sickness and postural instability. Ecol. Psychol. 3, 195–240 (1991)CrossRefGoogle Scholar
  7. 7.
    Report of Feasibility Study on Development of Image Production Support System for Compliance with International Guidelines on Visually Induced Motion Sickness (in Japanese). http://home.jeita.or.jp/page_file/20120601142409_GSrKkoEYvZ.pdf
  8. 8.
    ISO/IWA 3:2005 “Image safety – Reducing the incidence of undesirable biomedical effects caused by visual image sequences” (Standards catalogue). http://www.iso.org/iso/catalogue_detail.htm?csnumber=43019
  9. 9.
    Ujike, H.: Developing an evaluation system of visually induced motion sickness for safe usage of moving images: fermentation of a social understanding to supply secure and comfortable images through integration of researches on human characteristics, image analysis technique and image production technique. Synthesiology 3, 180–189 (2010)CrossRefGoogle Scholar
  10. 10.
    Matsuda, T., Ohnaka, Y.: A note on the relation between trembling of pictorial image and visually induced motion sickness. Ritsumeikan J. Hum. Sci. 9, 97–106 (2005)Google Scholar
  11. 11.
    Fischer, M.H., Kornmüller, A.E.: Optokinetisch ausgelöste Bewegungswahrnehmung und optokinetischer Nystagmus [Optokinetically induced motion perception and optokinetic nystagmus]. J. Psychol. Neurol. 41, 273–308 (1930)Google Scholar
  12. 12.
    Howard, I.P.: Human Visual Orientation. Wiley, Chichester (1982)Google Scholar
  13. 13.
    Warren, W.H.: Self-motion: visual perception and visual control. In: Epstein, W., Rogers, S. (eds.) Perception of Space and Motion. Academic Press, San Diego (1995)Google Scholar
  14. 14.
    Sauvan, X.M., Bonnet, C.: Spatiotemporal boundaries of linear vection. Percept. Psychophys. 57, 898–904 (1995)CrossRefGoogle Scholar
  15. 15.
    de Graaf, B., Wertheim, A.H., Bles, W., Kremers, J.: Angular velocity, not temporal frequency determines circular vection. Vis. Res. 30, 637–646 (1990)CrossRefGoogle Scholar
  16. 16.
    Kawashima, Y., Uchikawa, K., Kaneko, H., Fukuda, K., Yamamoto, K., Kiya, K.: Changing driver’s sensation of speed applying vection caused by flickering boards placed on sides of road. ITE (The Institute of Image Information and Television Engineers) J. 65, 833–840 (2011)CrossRefGoogle Scholar
  17. 17.
    Carpenter-Smith, T.R., Futamura, R.G., Parker, D.E.: Inertial acceleration as a measure of linear vection: an alternative to magnitude estimation. Percept. Psychophys. 57, 35–42 (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    Harris, L.R., Jenkin, M., Zikovitz, D.C.: Vestibular cues and virtual environments: choosing the magnitude of the vestibular cue. In: IEEE International Conference on Virtual Reality, pp. 229–236 (1999)Google Scholar
  19. 19.
    Edwards, M., O’Mahony, S., Ibbotson, M.R., Kohlhagen, S.: Vestibular stimulation affects optic-flow sensitivity. Perception 39, 1303–1310 (2010)CrossRefGoogle Scholar
  20. 20.
    Seno, T.: Vection is not determined by the retinal coordinate. Psychology 5, 12–14 (2014)CrossRefGoogle Scholar
  21. 21.
    Golding, J.F., Finch, M.I., Stott, J.R.: Frequency effect of 0.35-1.0 Hz horizontal translational oscillation on motion sickness and the somatogravic illusion. Aviat. Space Environ. Med. 68, 396–402 (1997)Google Scholar
  22. 22.
    Palmisano, S.: Perceiving self-motion in depth: the role of stereoscopic motion and changing-size cues. Percept. Psychophys. 58, 1168–1176 (1996)CrossRefGoogle Scholar
  23. 23.
    Brandt, T., Dichgans, J., Koenig, E.: Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res. 16, 476–491 (1973)CrossRefGoogle Scholar
  24. 24.
    Andersen, G.J., Braunstein, M.L.: Induced self-motion in central vision. J. Exp. Psychol. Human 11, 122–132 (1985)CrossRefGoogle Scholar
  25. 25.
    Shirai, N., Seno, T., Morohashi, S.: More rapid and stronger vection in elementary school children compared with adults. Perception 41, 1399–1402 (2012)CrossRefGoogle Scholar
  26. 26.
    Shirai, N., Imura, T., Tamura, R., Seno, T.: Stronger vection in junior high school children than in adults. Front. Psychol. 5, 1–6 (2014)CrossRefGoogle Scholar
  27. 27.
    Kawaida, Y., Fukudome, K., Uejima, A., Nishi, T., Matsushita, H.: Use of Balance Wii Board as a stabilometer. In: Proceedings of 44th Congress of the JPTA (Japanese Physical Therapy Association); 44th Annual Meeting of JPTA (Tokyo), B3P1321 (2009) (in Japanese). doi: 10.14900/cjpt.2008.0.B3P1321.0
  28. 28.
    Clark, R.A., Bryant, A.L., Pua, Y., McCrory, P., Bennell, K., Hunt, M.: Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31, 307–310 (2010)CrossRefGoogle Scholar
  29. 29.
    Hatsushika, S.-I.: A study on body sway by using a stabilometer: fundamental study and clinical significance. Nippon Jibiinkoka Gakkai Kaiho 90, 598–612 (1987). (Tokyo) (For review of the significance of the body sway test using a stabilometer)CrossRefGoogle Scholar
  30. 30.
    Romberg, M.H.: Manual of nervous diseases of man. Sydenham Soc. 2, 395–401 (1853)Google Scholar
  31. 31.
    Browne, J., O’Hare, N.: A review of the different methods for assessing standing balance. Physiotherapy 87, 489–495 (2001)CrossRefGoogle Scholar
  32. 32.
    Ujike, H.: Aiming to create a viewing environment of human-friendly images (in Japanese). AIST Today 6, 28–29 (2006). http://www.aist.go.jp/Portals/0/resource_images/aist_j/aistinfo/aist_today/vol06_03/vol06_03_p28_29.pdf
  33. 33.
    Masuda, C.: Three Dimensional Display, p. 49. Sangyotosho, Tokyo (1990). (in Japanese)Google Scholar
  34. 34.
    Mitsuhashi, T., Hatada, T., Yano, S.: Image and Visual Information Science. Corona, Tokyo (2009). (in Japanese)Google Scholar
  35. 35.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  36. 36.
    Abe, T.: Examine of the effect higher-order visual information to self-motion sensation. Bachelor thesis, School of Information, Kochi University of Technology (2014) (Similar result obtained by analysis of the velocity of COP was reported)Google Scholar
  37. 37.
    Bruck, S., Watters, P.A.: The factor structure of cybersickness. Displays 32, 153–158 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hiromu Ishio
    • 1
    Email author
  • Tatsuya Yamakawa
    • 2
  • Akihiro Sugiura
    • 2
    • 3
  • Kazuki Yoshikawa
    • 2
  • Takehito Kojima
    • 4
  • Shigeru Terada
    • 2
  • Kunihiko Tanaka
    • 3
  • Masaru Miyao
    • 2
  1. 1.Department of Urban ManagementFukuyama City UniversityFukuyama, HiroshimaJapan
  2. 2.Department of Information Engineering, Graduate School of Information ScienceNagoya UniversityFuro-cho, Chikusa-ku, NagoyaJapan
  3. 3.Department of Health ScienceGifu University of Medical ScienceSeki, GifuJapan
  4. 4.Department of NursingChubu Gakuin UniversitySeki, GifuJapan

Personalised recommendations