A Haptic Knob as an Innovative User Interface for Visually-Impaired

  • Maura MengoniEmail author
  • Lorenzo Cavalieri
  • Damiano Raponi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9176)


The present work describes an early research activity on a haptic user interface to assist visually impaired in using a multi-experience shower that saves energy and water and informs the user about current consumptions. The user interface aims to joint visual, tactile and kinesthetic feedbacks to improve digital contents accessibility. The knob is applied both to interact with the graphic interface by able-bodied persons and to emboss Braille text to drive the blind in navigating the menu items. The developed prototype is then illustrated.


Haptic feedback Assisted living Inclusive design Interaction design 


  1. 1.
    Wilkinson, C., De Angeli, A.: Applying user centred and participatory design approaches to commercial product development. Des. Stud. 35(6), 614–631 (2014)CrossRefGoogle Scholar
  2. 2.
    Sauer, J., Sonderegger, A.: The influence of prototype fidelity and aesthetics of de-sign in usability tests: effects on user behaviour, subjective evaluation and emotion. Appl. Ergon. 40, 670–677 (2009)CrossRefGoogle Scholar
  3. 3.
    Keates, S., Clarkson, J.: Countering design exclusion – an introduction to inclusive design. Springer Verlag, London (2003)Google Scholar
  4. 4.
    Sade, S., Nieminen, M., Riihiaho, S.: Testing usability with 3D paper proto-types-case Halton system. Appl. Ergon. 29(1), 13–61 (1998)CrossRefGoogle Scholar
  5. 5.
    Burdea, G.C., Coiffet, C.: Virtual Reality Technology, 2nd edn. Wiley-IEEE Press, New York (2003)Google Scholar
  6. 6.
    Wall, S.A., Brewster, S.: Sensory substitution using tactile pin arrays: human factors, technology and applications. Sig. Process. 86(12), 3674–3695 (2006)CrossRefGoogle Scholar
  7. 7.
    Cavalieri, L., Germani, M., Mengoni, M.: Multi-modal interaction system to tactile perception. Lecture Notes in Artificial Intelligence in Computer Science – Part I. from the International Conference on Human Computer Interaction (HCI 2014), pp. 25–34. Heraklion, Crete (2014)Google Scholar
  8. 8.
    Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: the International Conference on Computing System, 234–241, USA (1997)Google Scholar
  9. 9.
    Seichter, H., Kvan, T.: Tangible interfaces in design computing. Virtual Env. 2, 159–166 (2004)Google Scholar
  10. 10.
    Levesque, V.: Blindness, technology and haptics. Center for Intelligent Machines. Technical report (2005)Google Scholar
  11. 11.
    Guerreiro, T., Oliveira, J., Benedito, J., Nicolau, H., Jorge, J., Gonçalves, D.: Blind people and mobile keypads: accounting for individual differences. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part I. LNCS, vol. 6946, pp. 65–82. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Ceccacci, S., Germani, M., Mengoni, M.: How to use virtual and augmented reality techniques to design high usable human-machine interfaces. In: Langdon, P., Clarkson, J., Robinson, P., Lazar, J., Heylighen, A. (eds.) Designing Inclusive Systems: Designing Inclusion for Real-World Applications, Universal Access and Assistive Technology, pp. 65–74. Springer-verlag, London (2012)CrossRefGoogle Scholar
  13. 13.
    Hansen, J., Avons, S., Davidoff, J.: Attitude to telecare among older people, professional care workers and informal career: a preventive strategy or crisis management? Univ. Access Inf. Soc. 6(2), 193–205 (2007)CrossRefGoogle Scholar
  14. 14.
    Sharma, V., Simpson, R., LoPresti, E., Mostowy, C., Olson, J., Puhlman, J.: Participatory design in the development of wheelchair convoy system. J. NeuroEngineering Rehabil. 5, 1–10 (2008)CrossRefGoogle Scholar
  15. 15.
    Hassenzahl, M., Eckoldt, K., Diefenbach, S., Laschke, M., Lenz, E., Kim, J.: Designing moments of meaning and pleasure. Experience design and happiness. Int. J. Des. 7(3), 21–31 (2013)Google Scholar
  16. 16.
    Wilson, J.R., D’Cruz, M.: Virtual and interactive environments for work of the future. Int. J. Hum Comput Stud. 64, 158–169 (2006)CrossRefGoogle Scholar
  17. 17.
    Bordegoni, M., Cugini, U., Caruso, G., Polistina, S.: Mixed prototyping for product assessment: a reference framework. Int. J. Interact. Des. Manufact. 3, 177–187 (2009)CrossRefGoogle Scholar
  18. 18.
    Mengoni M., Ceccacci C., Raponi D.: An inclusive approach for home environment design. In: the 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Senigallia, Italy (2014)Google Scholar
  19. 19.
    Zuckerman, O., Gal-Oz, A.: To TUI or not to TUI: evaluating performance and preference in tangible vs. graphical user interfaces. Int. J. Hum Comput Stud. 71(7-8), 803–820 (2013)CrossRefGoogle Scholar
  20. 20.
    Marshall, P.: Do tangible interfaces enhance learning? In: the International Conference on Tangible and Embedded Interaction, pp. 163–170 (2007)Google Scholar
  21. 21.
    Hecht, D., Reiner, M., Karni, A.: Enhancement of response times to bi- and trimodal sensory stimuli during active movements. Exp. Brain Res. 185, 655–665 (2008)CrossRefGoogle Scholar
  22. 22.
    Hayward, V., Ashley, O., Hernandez, M.C., Grant, D., Robles-De-La-Torre, G.: Haptic interfaces and devices. Sens. Rev. 24, 16–29 (2004)CrossRefGoogle Scholar
  23. 23.
    Chouvardas, V., Miliou, A., Hatalis, M.: Tactile displays: Overview and recent advances. Displays 29, 185–194 (2008)CrossRefGoogle Scholar
  24. 24.
    Yang, T.-H., Kim, Y.-J., Park, Y.-K., Kim, S.-Y.: Design of a miniature integrated haptic device for cutaneous, thermal and kinaesthetic sensations. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part I. LNCS, vol. 8618, pp. 505–512. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Germani, M., Mengoni, M., Peruzzini, M.: Electro-tactile device for material texture simulation. Int. J. Adv. Manufact. Technol. 68, 2185–2203 (2013)CrossRefGoogle Scholar
  26. 26.
    Kim, S.C., Israr, A., Poupyrev, I.: Tactile rendering of 3D features on touch surfaces. In: the 26th annual ACM symposium on User interface software and technology, pp. 531 − 538, St. Andrews, UK (2008)Google Scholar
  27. 27.
    Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airbone ultrasound. IEEE Trans. on Haptics 3(3), 155–165 (2010)CrossRefGoogle Scholar
  28. 28.
    Bullion, C., Gurocak, H.: Haptic glove with MR brakes for distributed finger force feedback. Presence 18(6), 421–433 (2009)CrossRefGoogle Scholar
  29. 29.
    Brown, L.M., Brewster, S.A. Purchase, H.C.: Multidimensional tactons for non-visual information presentation in mobile devices. In: the 8th conference on Human-computer interaction with mobile devices and services, Espoo, Finland (2006)Google Scholar
  30. 30.
    Kammoun, S., Jouffrais, C., Guerriero, T., Nicolau, H., Jorge, J.: Guiding blind people with haptic feedback. In: Pervasive 2012 Workshop on Frontiers in Accessibility for Pervasive Computing, New Castle, UK (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maura Mengoni
    • 1
    Email author
  • Lorenzo Cavalieri
    • 1
  • Damiano Raponi
    • 1
  1. 1.Polytechnic University of MarcheAnconaItaly

Personalised recommendations