Skip to main content

Infection-Associated Hematological Malignancies

  • Chapter
  • 793 Accesses

Abstract

The association between infectious agents and hematologic human malignancies has been actively studied, and numerous viral and bacterial agents were found to play a significant role in the pathogenesis of these diseases. However, the exact molecular mechanisms of infection-induced oncogenesis are still not completely understood. Three viruses, Epstein-Barr virus (EBV), Human T-cell lymphotropic virus I (HTLV-I), and Kaposi’s sarcoma herpesvirus (KSHV), and one bacteria, Helicobacter pylori (H. pylori) have been definitely associated with human hematologic malignancies, particularly, lymphoid neoplasms. Although these agents employ very different specific oncogenic mechanisms, they converge on several common intercellular pathways (such as cell-cycle regulation, proliferation and apoptosis) that eventually lead to malignant transformation. Environmental and host cofactors such as immunosuppression, genetic predisposition, and mutagens can accelerate the development of these neoplasms. The study of infectious agents and of the multiple mechanisms deployed by them has improved our current understanding of cancer biology. The emerging information may expedite the development of new targeted approaches to prevent and treat infection-associated hematologic malignancies. In this review we will focus on the molecular mechanisms that are involved in the development of the wide spectrum of hematologic malignancies, associated with EBV, HTLV-1, KSHV and H. pylori, as well as their main clinical features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AITL:

Angioimmunoblastic T-cell lymphoma

BL:

Burkitt lymphoma

CNS:

central nervous system

DLBCL:

diffuse large B cell lymphoma

EBV:

Epstein-Barr virus

HHV-8:

Human Herpesvirus-8

HL:

Hodgkin lymphoma

HTLV-I :

Human T-cell lymphotropic virus I

KSHV :

Kaposi’s sarcoma herpesvirus

LANA:

latency-associated nuclear antigen

LYG:

Lymphomatoid granulomatosis

MALT:

mucosa associated lymphoid tissue

PEL:

primary effusion lymphoma

PTLD:

Post-transplant lymphoproliferative diseases

References

  • Alizadeh AA, Advani RH (2008) Evaluation and management of angioimmunoblastic T-cell lymphoma: a review of current approaches and future strategies. Clin Adv Hematol Oncol 6(12):899–909

    PubMed  Google Scholar 

  • Anagnostopoulos I, Hummel M et al (1992) Heterogeneous Epstein-Barr virus infection patterns in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood 80(7):1804–1812

    CAS  PubMed  Google Scholar 

  • Arisawa K, Soda M et al (2000) Evaluation of adult T-cell leukemia/lymphoma incidence and its impact on non-Hodgkin lymphoma incidence in southwestern Japan. Int J Cancer 85(3):319–324

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis L, Yaseen N et al (1995) Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol 155(3):1047–1056

    CAS  PubMed  Google Scholar 

  • Au WY, Pang A et al (2004) Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood 104(1):243–249

    Article  CAS  PubMed  Google Scholar 

  • Backert S, Tegtmeyer N et al (2010) The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis. Helicobacter 15(3):163–176

    Article  CAS  PubMed  Google Scholar 

  • Bouvard V, Baan R et al (2009) A review of human carcinogens–Part B: biological agents. Lancet Oncol 10(4):321–322

    Article  PubMed  Google Scholar 

  • Brink AA, Dukers DF et al (1997) Presence of Epstein-Barr virus latency type III at the single cell level in post-transplantation lymphoproliferative disorders and AIDS related lymphomas. J Clin Pathol 50(11):911–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown KD, Hostager BS et al (2001) Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 193(8):943–954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai X, Lu S et al (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 102(15):5570–5575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canaan A, Haviv I et al (2009) EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci U S A 106(52):22421–22426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capello D, Rossi D et al (2005) Post-transplant lymphoproliferative disorders: molecular basis of disease histogenesis and pathogenesis. Hematol Oncol 23(2):61–67

    Article  PubMed  Google Scholar 

  • Carbone A (2003) Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol 4(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Carbone A, Gloghini A et al (1996) Kaposi’s sarcoma-associated herpesvirus DNA sequences in AIDS-related and AIDS-unrelated lymphomatous effusions. Br J Haematol 94(3):533–543

    Article  CAS  PubMed  Google Scholar 

  • Carbone A, Gloghini A et al (2008) EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist 13(5):577–585

    Article  PubMed  Google Scholar 

  • Carbone A, Cesarman E et al (2010) Understanding pathogenetic aspects and clinical presentation of primary effusion lymphoma through its derived cell lines. AIDS 24(4):479–490

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan JKC, Aozasa K, Gaulard P (2008) DLBCL associated with chronic inflammation. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumours of haemotopoietic and lymphoid tissues. IARC Press, Lyon, pp 245–246

    Google Scholar 

  • Chapman AL, Rickinson AB (1998) Epstein-Barr virus in Hodgkin’s disease. Ann Oncol 9(Suppl 5):S5–S16

    Article  PubMed  Google Scholar 

  • Chen CY, Wang FY et al (2013) Amino acid polymorphisms flanking the EPIYA-A motif of Helicobacter pylori CagA C-terminal region is associated with gastric cancer in east China: experience from a single center. J Dig Dis 14(7):358–365

    Article  CAS  PubMed  Google Scholar 

  • Chuang HC, Lay JD et al (2007) Pathogenesis and mechanism of disease progression from hemophagocytic lymphohistiocytosis to Epstein-Barr virus-associated T-cell lymphoma: nuclear factor-kappa B pathway as a potential therapeutic target. Cancer Sci 98(9):1281–1287

    Article  CAS  PubMed  Google Scholar 

  • Cohen JI (2000) Epstein-Barr virus infection. N Engl J Med 343(7):481–492

    Article  CAS  PubMed  Google Scholar 

  • Coppotelli G, Mughal N et al (2013) The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins. Nucleic Acids Res 41(5):2950–2962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craig VJ, Cogliatti SB et al (2010) B-cell receptor signaling and CD40 ligand-independent T cell help cooperate in Helicobacter-induced MALT lymphomagenesis. Leukemia 24(6):1186–1196

    Article  CAS  PubMed  Google Scholar 

  • de Leval L, Hasserjian RP (2009) Diffuse large B-cell lymphomas and burkitt lymphoma. Hematol Oncol Clin North Am 23(4):791–827

    Article  PubMed  Google Scholar 

  • Deacon EM, Pallesen G et al (1993) Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177(2):339–349

    Article  CAS  PubMed  Google Scholar 

  • Doerr JR, Malone CS et al (2005) Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol 350(4):631–640

    Article  CAS  PubMed  Google Scholar 

  • Dogan A, Attygalle AD et al (2003) Angioimmunoblastic T-cell lymphoma. Br J Haematol 121(5):681–691

    Article  PubMed  Google Scholar 

  • Draoua HY, Tsao L et al (2004) T-cell post-transplantation lymphoproliferative disorders after cardiac transplantation: a single institutional experience. Br J Haematol 127(4):429–432

    Article  CAS  PubMed  Google Scholar 

  • Dresang LR, Vereide DT et al (2009) Identifying sites bound by Epstein-Barr virus nuclear antigen 1 (EBNA1) in the human genome: defining a position-weighted matrix to predict sites bound by EBNA1 in viral genomes. J Virol 83(7):2930–2940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du MQ (2011) MALT lymphoma: many roads lead to nuclear factor-kappab activation. Histopathology 58(1):26–38

    Article  PubMed  Google Scholar 

  • Dunleavy K, Wilson WH et al (2007) Angioimmunoblastic T cell lymphoma: pathobiological insights and clinical implications. Curr Opin Hematol 14(4):348–353

    Article  CAS  PubMed  Google Scholar 

  • Eck M, Fischbach W (2010) Gastric MALT-type lymphoma. Pathology, pathogenesis, diagnostics and therapy. Pathologe 31(3):188–194

    Article  CAS  PubMed  Google Scholar 

  • Eck M, Schmausser B et al (1997) MALT-type lymphoma of the stomach is associated with Helicobacter pylori strains expressing the CagA protein. Gastroenterology 112(5):1482–1486

    Article  CAS  PubMed  Google Scholar 

  • Eliopoulos AG, Stack M et al (1997) Epstein-Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kappaB pathway involving TNF receptor-associated factors. Oncogene 14(24):2899–2916

    Article  CAS  PubMed  Google Scholar 

  • Eliopoulos AG, Gallagher NJ et al (1999) Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274(23):16085–16096

    Article  CAS  PubMed  Google Scholar 

  • Engels EA (2007) Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 16(3):401–404

    Article  CAS  PubMed  Google Scholar 

  • Epstein MA, Achong BG et al (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1(7335):702–703

    Article  CAS  PubMed  Google Scholar 

  • Evens AM, Roy R et al (2010) Post-transplantation lymphoproliferative disorders: diagnosis, prognosis, and current approaches to therapy. Curr Oncol Rep 12(6):383–394

    Article  PubMed  Google Scholar 

  • Ferreri AJ, Guidoboni M et al (2004) Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst 96(8):586–594

    Article  PubMed  Google Scholar 

  • Ferreri AJ, Govi S et al (2013) The role of Helicobacter pylori eradication in the treatment of diffuse large B-cell and marginal zone lymphomas of the stomach. Curr Opin Oncol 25(5):470–479

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci PF, Zucca E (2007) Primary gastric lymphoma pathogenesis and treatment: what has changed over the past 10 years? Br J Haematol 136(4):521–538

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, He C et al (2013) Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. J Zhejiang Univ Sci B 14(1):8–24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fuentes-Gonzalez AM, Contreras-Paredes A et al (2013) The modulation of apoptosis by oncogenic viruses. Virol J 10:182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia M, Bellosillo B et al (2012) Study of regulatory T-cells in patients with gastric malt lymphoma: influence on treatment response and outcome. PLoS One 7(12):e51681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • God JM, Haque A (2010) Burkitt lymphoma: pathogenesis and immune evasion. J Oncol 2010 pii: 516047

    Google Scholar 

  • Gregory CD, Dive C et al (1991) Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature 349(6310):612–614

    Article  CAS  PubMed  Google Scholar 

  • Gruhne B, Sompallae R et al (2009a) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A 106(7):2313–2318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruhne B, Sompallae R et al (2009b) Three Epstein-Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene 28(45):3997–4008

    Article  CAS  PubMed  Google Scholar 

  • Grywalska E, Markowicz J et al (2013) Epstein-Barr virus-associated lymphoproliferative disorders. Postepy Hig Med Dosw (Online) 67:481–490

    Article  Google Scholar 

  • Gualco G, Domeny-Duarte P et al (2011) Clinicopathologic and molecular features of 122 Brazilian cases of nodal and extranodal NK/T-cell lymphoma, nasal type, with EBV subtyping analysis. Am J Surg Pathol 35(8):1195–1203

    Article  PubMed  Google Scholar 

  • Harris NL, Campo E, Jaffe ES, Pileri SA, Stein H, Swerdlow SH, Thiele J, Vardman JW (2008) Introduction to the WHO classification of tumours of haematopoietic and lymphoid tissues. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 14–15

    Google Scholar 

  • Hatakeyama M (2008) SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol 11(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama M, Higashi H (2005) Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci 96(12):835–843

    Article  CAS  PubMed  Google Scholar 

  • Hohaus S, Santangelo R et al (2011) The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res 17(9):2885–2892

    Article  CAS  PubMed  Google Scholar 

  • Iannitto E, Ferreri AJ et al (2008) Angioimmunoblastic T-cell lymphoma. Crit Rev Oncol Hematol 68(3):264–271

    Article  PubMed  Google Scholar 

  • Isaacson PG (2005) Update on MALT lymphomas. Best Pract Res Clin Haematol 18(1):57–68

    Article  CAS  PubMed  Google Scholar 

  • Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematol Am Soc Hematol Educ Program 2009:523–531

    Article  Google Scholar 

  • Jaffe ES, Ralfkiaer E (2001) Angioimmunolastic T-cell lymphoma. In: Jaffe NLHES, Stein H, Vardiman JW (eds) Pathology and genetics: tumours of haematopoietic and lymphoid tissues. IRAC Press, Lyon, pp 225–226

    Google Scholar 

  • Jaffe ES, Wilson WH (1997) Lymphomatoid granulomatosis: pathogenesis, pathology and clinical implications. Cancer Surv 30:233–248

    CAS  PubMed  Google Scholar 

  • Javier RT, Butel JS (2008) The history of tumor virology. Cancer Res 68(19):7693–7706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamranvar SA, Masucci MG (2011) The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress. Leukemia 25(6):1017–1025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamranvar SA, Gruhne B et al (2007) Epstein-Barr virus promotes genomic instability in Burkitt’s lymphoma. Oncogene 26(35):5115–5123

    Article  CAS  PubMed  Google Scholar 

  • Kapatai G, Murray P (2007) Contribution of the Epstein Barr virus to the molecular pathogenesis of Hodgkin lymphoma. J Clin Pathol 60(12):1342–1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karube K, Ohshima K et al (2004) Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol 126(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Kennedy G, Komano J et al (2003) Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A 100(24):14269–14274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kilger E, Kieser A et al (1998) Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. Embo J 17(6):1700–1709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JH, Kim WS et al (2013) Epstein-Barr virus latent membrane protein 1 increases genomic instability through Egr-1-mediated up-regulation of activation-induced cytidine deaminase in B-cell lymphoma. Leuk Lymphoma 54(9):2035–2040

    Article  CAS  PubMed  Google Scholar 

  • Komanduri KV, Luce JA et al (1996) The natural history and molecular heterogeneity of HIV-associated primary malignant lymphomatous effusions. J Acquir Immune Defic Syndr Hum Retrovirol 13(3):215–226

    Article  CAS  PubMed  Google Scholar 

  • Kuo SH, Chen LT et al (2013) Detection of the Helicobacter pylori CagA protein in gastric mucosa-associated lymphoid tissue lymphoma cells: clinical and biological significance. Blood Cancer J 3:e125

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuze T, Nakamura N et al (2000) The characteristics of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma: comparison between EBV(+) and EBV(−) cases in Japanese population. Jpn J Cancer Res 91(12):1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Lagunoff M, Ganem D (1997) The structure and coding organization of the genomic termini of Kaposi’s sarcoma-associated herpesvirus. Virology 236(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Laherty CD, Hu HM et al (1992) The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem 267(34):24157–24160

    CAS  PubMed  Google Scholar 

  • Lecuit M, Abachin E et al (2004) Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med 350(3):239–248

    Article  CAS  PubMed  Google Scholar 

  • Leoncini L, Raphael M, Stein H, Harris NL, Jaffe ES, Kluin PM (2008) Burkitt lymphoma. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumours of haemotopoietic and lymphoid tissues. IARC Press, Lyon, pp 262–264

    Google Scholar 

  • Levitskaya J, Coram M et al (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375(6533):685–688

    Article  CAS  PubMed  Google Scholar 

  • Liao JB (2006) Viruses and human cancer. Yale J Biol Med 79(3–4):115–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin WC, Tsai HF et al (2010) Translocation of Helicobacter pylori CagA into Human B lymphocytes, the origin of mucosa-associated lymphoid tissue lymphoma. Cancer Res 70(14):5740–5748

    Article  CAS  PubMed  Google Scholar 

  • Liu MT, Chen YR et al (2004) Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23(14):2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Liu MT, Chang YT et al (2005) Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene 24(16):2635–2646

    Article  CAS  PubMed  Google Scholar 

  • Long JL, Engels EA et al (2008) Incidence and outcomes of malignancy in the HAART era in an urban cohort of HIV-infected individuals. AIDS 22(4):489–496

    Article  PubMed Central  PubMed  Google Scholar 

  • Lopes LF, Ruiz Miyazawa KW et al (2013) Epstein-Barr virus (EBV) microRNAs: involvement in cancer pathogenesis and immunopathology. Int Rev Immunol 32(3):271–281

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Wikramasinghe P et al (2010) Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). Virol J 7:262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martin D, Gutkind JS (2008) Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 27(Suppl 2):S31–S42

    Article  CAS  PubMed  Google Scholar 

  • Maruo S, Zhao B et al (2011) Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc Natl Acad Sci U S A 108(5):1919–1924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuo K, Kusano A et al (2004) Effect of hepatitis C virus infection on the risk of non-Hodgkin’s lymphoma: a meta-analysis of epidemiological studies. Cancer Sci 95(9):745–752

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Jeang KT (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7(4):270–280

    Article  CAS  PubMed  Google Scholar 

  • Mbulaiteye SM, Biggar RJ et al (2003) Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr 32(5):527–533

    Article  PubMed  Google Scholar 

  • Mesri EA, Feitelson MA et al (2014) Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 15(3):266–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Middeldorp JM, Pegtel DM (2008) Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. Semin Cancer Biol 18(6):388–396

    Article  CAS  PubMed  Google Scholar 

  • Mosialos G, Birkenbach M et al (1995) The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80(3):389–399

    Article  CAS  PubMed  Google Scholar 

  • Munz C, Moormann A (2008) Immune escape by Epstein-Barr virus associated malignancies. Semin Cancer Biol 18(6):381–387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murata T, Sato Y et al (2014) Modes of infection and oncogenesis by the Epstein-Barr virus. Rev Med Virol 24(4):242–253

    Article  CAS  PubMed  Google Scholar 

  • Murray PG, Qiu GH et al (2004) Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in Hodgkin’s lymphoma. Oncogene 23(6):1326–1331

    Article  CAS  PubMed  Google Scholar 

  • Nador RG, Cesarman E et al (1996) Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood 88(2):645–656

    CAS  PubMed  Google Scholar 

  • Nakamura S, Jaffe ES, Swerdlow SH (2008) EBV positive diffuse large B-cell lymphoma of the elderly. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumours of haemotopoietic and lymphoid tissues. IARC Press, Lyon, pp 243–244

    Google Scholar 

  • Nakamura S, Sugiyama T et al (2012) Long-term clinical outcome of gastric MALT lymphoma after eradication of Helicobacter pylori: a multicentre cohort follow-up study of 420 patients in Japan. Gut 61(4):507–513

    Article  PubMed  Google Scholar 

  • Ohnishi N, Yuasa H et al (2008) Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A 105(3):1003–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohshima K, Jaffe ES, Kikuchi M (2008) Adult T-cell leukaemia/lymphoma. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumors: pathology and genetics of tumors of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 281–284

    Google Scholar 

  • Ojala PM, Yamamoto K et al (2000) The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl-2. Nat Cell Biol 2(11):819–825

    Article  CAS  PubMed  Google Scholar 

  • Owens SR, Smith LB (2011) Molecular aspects of H. pylori-related MALT lymphoma. Pathol Res Int 2011:193149

    Article  Google Scholar 

  • Oyama T, Ichimura K et al (2003) Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 27(1):16–26

    Article  PubMed  Google Scholar 

  • Oyama T, Yamamoto K et al (2007) Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res 13(17):5124–5132

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044

    Article  CAS  PubMed  Google Scholar 

  • Pereira MI, Medeiros JA (2014) Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas. World J Gastroenterol 20(3):684–698

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW et al (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77(12):7415–7419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Portis T, Ikeda M et al (2004) Epstein-Barr virus LMP2A: regulating cellular ubiquitination processes for maintenance of viral latency? Trends Immunol 25(8):422–426

    Article  CAS  PubMed  Google Scholar 

  • Putaluga S, Wilson WH, Jaffe ES (2008) Lymphomatoid granulomatosis. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumors: pathology and genetics of tumors of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 247–249

    Google Scholar 

  • Qu Z, Xiao G (2011) Human T-cell lymphotropic virus: a model of NF-kappaB-associated tumorigenesis. Viruses 3(6):714–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radkov SA, Kellam P et al (2000) The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6(10):1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Raphael M, Said J, Borisch B, Cesarman E, Harris NL (2008) Lymphomas associated with HIV infection. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumours of haemotopoietic and lymphoid tissues. IARC Press, Lyon, pp 340–342

    Google Scholar 

  • Renne R, Lagunoff M et al (1996) The size and conformation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 70(11):8151–8154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rickinson AB (2014) Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol 26:99–115

    Article  CAS  PubMed  Google Scholar 

  • Roschewski M, Wilson WH (2012) EBV-associated lymphomas in adults. Best Pract Res Clin Haematol 25(1):75–89

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossi D, Gaidano G et al (2003) Frequent aberrant promoter hypermethylation of O6-methylguanine-DNA methyltransferase and death-associated protein kinase genes in immunodeficiency-related lymphomas. Br J Haematol 123(3):475–478

    Article  CAS  PubMed  Google Scholar 

  • Rowe M, Kelly GL et al (2009) Burkitt’s lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol 19(6):377–388

    Article  PubMed Central  PubMed  Google Scholar 

  • Russo JJ, Bohenzky RA et al (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93(25):14862–14867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagaert X, Van Cutsem E et al (2010) Gastric MALT lymphoma: a model of chronic inflammation-induced tumor development. Nat Rev Gastroenterol Hepatol 7(6):336–346

    CAS  PubMed  Google Scholar 

  • Saha A, Robertson ES (2011) Epstein-Barr virus-associated B-cell lymphomas: pathogenesis and clinical outcomes. Clin Cancer Res 17(10):3056–3063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Said J, Cesarman E (2008) Primary efusion lymphoma. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumors: pathology and genetics of tumors of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 260–261

    Google Scholar 

  • Samols MA, Skalsky RL et al (2007) Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3(5):e65

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sasajima Y, Yamabe H et al (1993) High expression of the Epstein-Barr virus latent protein EB nuclear antigen-2 on pyothorax-associated lymphomas. Am J Pathol 143(5):1280–1285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz R, Young RM et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sibony M, Jones NL (2012) Recent advances in Helicobacter pylori pathogenesis. Curr Opin Gastroenterol 28(1):30–35

    Article  PubMed  Google Scholar 

  • Siddiqui ST, Naz E et al (2011) Frequency of Helicobacter pylori in biopsy proven gastritis and its association with lymphoid follicle formation. J Pak Med Assoc 61(2):138–141

    PubMed  Google Scholar 

  • Skalska L, White RE et al (2013) Induction of p16(INK4a) is the major barrier to proliferation when Epstein-Barr virus (EBV) transforms primary B cells into lymphoblastoid cell lines. PLoS Pathog 9(2):e1003187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snow AL, Lambert SL et al (2006) EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis. J Immunol 177(5):3283–3293

    Article  CAS  PubMed  Google Scholar 

  • Sompallae R, Callegari S et al (2010) Transcription profiling of Epstein-Barr virus nuclear antigen (EBNA)-1 expressing cells suggests targeting of chromatin remodeling complexes. PLoS One 5(8):e12052

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soni V, Cahir-McFarland E et al (2007) LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol 597:173–187

    Article  PubMed  Google Scholar 

  • Stein H, Delsol G, Pileri SA, Weiss LM, Poppema S, Jaffe ES (2008) Classical Hodgkin lymphoma, introduction. In: Swerdlow ECSH, Harris NL, Jaffe ES, Pileri SA, Harald S, Thiele J, Vardiman JW (eds) WHO classification of tumours of haemotopoietic and lymphoid tissues. IARC Press, Lyon, pp 326–330

    Google Scholar 

  • Stolte M, Bayerdorffer E et al (2002) Helicobacter and gastric MALT lymphoma. Gut 50(Suppl 3):III19–III24

    PubMed Central  PubMed  Google Scholar 

  • Takakuwa T, Luo WJ et al (2003) Establishment and characterization of unique cell lines derived from pyothorax-associated lymphoma which develops in long-standing pyothorax and is strongly associated with Epstein-Barr virus infection. Cancer Sci 94(10):858–863

    Article  CAS  PubMed  Google Scholar 

  • Tegtmeyer N, Wessler S et al (2011) Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J 278(8):1190–1202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tempera I, Lieberman PM (2014) Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol 26:22–29

    Article  CAS  PubMed  Google Scholar 

  • Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350(13):1328–1337

    Article  CAS  PubMed  Google Scholar 

  • Timms JM, Bell A et al (2003) Target cells of Epstein-Barr-virus (EBV)-positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin’s lymphoma. Lancet 361(9353):217–223

    Article  PubMed  Google Scholar 

  • Troch M, Jonak C et al (2009) A phase II study of bortezomib in patients with MALT lymphoma. Haematologica 94(5):738–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukasaki K, Utsunomiya A et al (2007) VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol 25(34):5458–5464

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Yodoi J et al (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50(3):481–492

    CAS  PubMed  Google Scholar 

  • Umehara S, Higashi H et al (2003) Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22(51):8337–8342

    Article  CAS  PubMed  Google Scholar 

  • Ushmorov A, Leithauser F et al (2006) Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 107(6):2493–2500

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch CA (2004) Is endemic Burkitt’s lymphoma an alliance between three infections and a tumour promoter? Lancet Oncol 5(12):738–746

    Article  PubMed  Google Scholar 

  • Vereide DT, Seto E et al (2013) Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene 33(10):1258–1264

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang S, Frappier L (2009) Nucleosome assembly proteins bind to Epstein-Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. J Virol 83(22):11704–11714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang HP, Zhu YL et al (2013) Role of Helicobacter pylori virulence factor cytotoxin-associated gene A in gastric mucosa-associated lymphoid tissue lymphoma. World J Gastroenterol 19(45):8219–8226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss LM, Jaffe ES et al (1992) Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood 79(7):1789–1795

    CAS  PubMed  Google Scholar 

  • Wilson JB, Bell JL et al (1996) Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. Embo J 15(12):3117–3126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright DH (1999) What is Burkitt’s lymphoma and when is it endemic? Blood 93(2):758

    CAS  PubMed  Google Scholar 

  • Yamada Y, Tomonaga M et al (2001) A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. Br J Haematol 113(2):375–382

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Murray PG (2003) Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22(33):5108–5121

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Rickinson AB (2004) Epstein-Barr virus: 40 years on. Nat Rev Cancer 4(10):757–768

    Article  CAS  PubMed  Google Scholar 

  • Yustein JT, Dang CV (2007) Biology and treatment of Burkitt’s lymphoma. Curr Opin Hematol 14(4):375–381

    Article  PubMed  Google Scholar 

  • Zhou Y, Attygalle AD et al (2007) Angioimmunoblastic T-cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br J Haematol 138(1):44–53

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang C et al (2007) The Helicobacter pylori virulence factor CagA promotes Erk1/2-mediated Bad phosphorylation in lymphocytes: a mechanism of CagA-inhibited lymphocyte apoptosis. Cell Microbiol 9(4):952–961

    Article  CAS  PubMed  Google Scholar 

  • Zucca E, Bertoni F et al (1998) Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl J Med 338(12):804–810

    Article  CAS  PubMed  Google Scholar 

  • Zullo A, Hassan C et al (2010) Effects of Helicobacter pylori eradication on early stage gastric mucosa-associated lymphoid tissue lymphoma. Clin Gastroenterol Hepatol 8(2):105–110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy W. Gutkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutkin, D.W. (2015). Infection-Associated Hematological Malignancies. In: Shurin, M., Thanavala, Y., Ismail, N. (eds) Infection and Cancer: Bi-Directorial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-20669-1_7

Download citation

Publish with us

Policies and ethics