Advertisement

Technical and Technological Advances in Robotic Partial Nephrectomy

  • Manish N. Patel
  • Ram A. Pathak
  • Ashok K. HemalEmail author
Chapter
  • 611 Downloads

Abstract

Robotic parital nephrectomy is an ever-changing field with new technologies and techniques being introduced constantly. The goal of all these advances is to achieve the trifecta, meaning no complications, negative margins and minimal decrease in renal function postoperatively. In this chapter, we discuss many of the new techniques and technologies helping urologists achieve the idea of the trifecta for partial nephrectomy.

Keywords

Robot-assisted Renal cell carcinoma Partial nephrectomy Kidney cancer Indocyanine green TilePro Intraoperative ultrasound Integrated table motion 

References

  1. 1.
    Campbell S, Uzzo R, Allaf M, et al. Renal mass and localized kidney Cancer: AUA guideline. J Urol. 2017;198:520–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim SP, Shah ND, Weight CJ, Thompson RH, Moriarty JP, Shippee ND, et al. Contemporary trends in nephrectomy for renal cell carcinoma in the United States: results from a population based cohort. J Urol. 2011;186(5):1779–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Hung AJ, Cai J, Simmons MN, Gill IS. "Trifecta" in partial nephrectomy. J Urol. 2013;189(1):36–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Khalifeh A, Autorino R, Hillyer SP, Laydner H, Eyraud R, Panumatrassamee K, et al. Comparative outcomes and assessment of trifecta in 500 robotic and laparoscopic partial nephrectomy cases: a single surgeon experience. J Urol. 2013;189(4):1236–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Krane LS, Hemal AK. Emerging technologies to improve techniques and outcomes of robotic partial nephrectomy: striving toward the pentafecta. Urol Clin North Am. 2014;41:511–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Paulucci DJ, Abaza R, Eun DD, Hemal AK, Badani KK. Robot-assisted partial nephrectomy: continued refinement of outcomes beyond the initial learning curve. BJU Int. 2017;119:748–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Halverson SJ, Kunju LP, Bhalla R, Gadzinski AJ, Alderman M, Miller DC, et al. Accuracy of determining small renal mass management with risk stratified biopsies: confirmation by final pathology. J Urol. 2013;189(2):441–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Davidiuk AJ, Parker AS, Thomas CS, Leibovich BC, Castle EP, Heckman MG, et al. Mayo adhesive propability score: an accurate image-based scoring system to predict adherent perinephric fat in partial nephrectomy. Eur Urol. 2014;66:1165–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Davidiuk AJ, Parker AS, Thomas CS, Heckman MG, Custer K, Thiel DD. Prospective evaluation of the association of adherent perinephric fat with perioperative outcomes of robotic-assisted partial nephrectomy. Urology. 2015;85:836–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Thiel DD, Davidiuk AJ, Meschia C, Serie D, Custer K, Petrou SP, et al. Mayo adhesive probability score is associated with localized renal cell carcinoma progress-free survival. Urology. 2016;89:54–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Patel AR, Eggener SE. Warm ischemia less than 30 minutes is not necessarily safe during partial nephrectomy: every minute matters. Urol Oncol. 2011;29(6):826–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Benway BM, Baca G, Bhayani SB, Das NA, Katz MD, Diaz DL, et al. Selective versus nonselective arterial clamping during laparoscopic partial nephrectomy: impact upon renal function in the setting of a solitary kidney in a porcine model. J Endourol. 2009;23(7):1127–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Parekh DJ, Weinberg JM, Ercole B, Torkko KC, Hilton W, Bennett M, et al. Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrol. 2013;24(3):506–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Smith GL, Kenney PA, Lee Y, Libertino JA. Non-clamped partial nephrectomy: techniques and surgical outcomes. BJU Int. 2011;107(7):1054–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Gill IS, Eisenberg MS, Aron M, Berger A, Ukimura O, Patil MB, et al. "Zero ischemia" partial nephrectomy: novel laparoscopic and robotic technique. Eur Urol. 2011;59(1):128–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Rizkala ER, Khalifeh A, Autorino R, Samarasekera D, Laydner H, Kaouk JH. Zero ischemia robotic partial nephrectomy: sequential preplaced suture renorrhaphy technique. Urology. 2013;82(1):100–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Novak R, Mulligan D, Abaza R. Robotic partial nephrectomy without renal ischemia. Urology. 2012;79(6):1296–301.CrossRefPubMedGoogle Scholar
  18. 18.
    Krane LS, Mufarrij PW, Manny TB, Hemal AK. Comparison of clamping technique in robotic partial nephrectomy: does unclamped partial nephrectomy improve perioperative outcomes and renal function? Can J Urol. 2013;20(1):6662–7.PubMedGoogle Scholar
  19. 19.
    Desai MM, de Castro Abreu AL, Leslie S, Cai J, Huang EY, Lewandowski PM, et al. Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol. 2014;66(4):713–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Rogers CG, Ghani KR, Kumar RK, Jeong W, Menon M. Robotic partial nephrectomy with cold ischemia and on-clamp tumor extraction: recapitulating the open approach. Eur Urol. 2013;63(3):573–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Olweny EO, Faddegon S, Best SL, Jackson N, Wehner EF, Tan YK, et al. Renal oxygenation during robot-assisted laparoscopic partial nephrectomy: characterization using laparoscopic digital light processing hyperspectral imaging. J Endourol. 2013;27(3):265–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013;111(4):604–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Harke N, Schoen G, Schiefelbein F, Heinrich E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: a single-surgeon matched-pair study. World J Urol. 2014;32(5):1259–65.CrossRefPubMedGoogle Scholar
  24. 24.
    Manny TB, Krane LS, Hemal AK. Indocyanine green cannot predict malignancy in partial nephrectomy: histopathologic correlation with fluorescence pattern in 100 patients. J Endourol. 2013;27(7):918–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Krane LS, Hemal AK. Surgery: is indocyanine green dye useful in robotic surgery? Nat Rev Urol. 2014;11(1):12–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Stein RJ, White WM, Goel RK, Irwin BH, Haber GP, Kaouk JH. Robotic laparoendoscopic single-site surgery using GelPort as the access platform. Eur Urol. 2010;57(1):132–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Tiu A, Shin TY, Kim KH, Lim SK, Han WK, Rha KH. Robotic laparoendoscopic single-site transumbilical partial nephrectomy: functional and oncologic outcomes at 2 years. Urology. 2013;82(3):595–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Komninos C, Shin TY, Tuliao P, Yoon YE, Koo KC, Chang CH, et al. R-LESS partial nephrectomy trifecta outcome is inferior to multiport robotic partial nephrectomy: comparative analysis. Eur Urol. 2014;66(3):512–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Rogers CG, Laungani R, Bhandari A, Krane LS, Eun D, Patel MN. Maximizing console surgeon independence during robot-assisted renal surgery by using the fourth arm and TilePro. J Endourol. 2009;23(1):115–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Kaczmarek BF, Sukumar S, Petros F, Trinh QD, Mander N, Chen R, et al. Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: initial series and outcomes. Int J Urol. 2013;20(2):172–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Kaczmarek BF, Sukumar S, Kumar RK, Desa N, Jost K, Diaz M. Comparison of robotic and laparoscopic ultrasound probes for robotic partial nephrectomy. J Endourol. 2013;27(9):1137–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Rao AR, Gray R, Mayer E, Motiwala H, Laniado M, Karim O. Occlusion angiography using intraoperative contrast-enhanced ultrasound scan (CEUS): a novel technique demonstrating segmental renal blood supply to assist zero-ischaemia robot-assisted partial nephrectomy. Eur Urol. 2013;63(5):913–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Benway BM, Wang AJ, Cabello JM, Bhayani SB. Robotic partial nephrectomy with sliding-clip renorrhaphy: technique and outcomes. Eur Urol. 2009;55(3):592–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Shalhav AL, Orvieto MA, Chien GW, Mikhail AA, Zagaja GP, Zorn KC. Minimizing knot tying during reconstructive laparoscopic urology. Urology. 2006;68(3):508–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Kaouk JH, Hillyer SP, Autorino R, Haber GP, Gao T, Altunrende F, et al. 252 robotic partial nephrectomies: evolving renorrhaphy technique and surgical outcomes at a single institution. Urology. 2011;78(6):1338–44.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee Z, Reilly CE, Moore BW, Mydlo JH, Lee DI, Eun DD. Stone formation from nonabsorbable clip migration into the collecting system after robot-assisted partial nephrectomy. Case Rep Urol. 2014;2014:397427.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wu SD, Rios RR, Meeks JJ, Nadler RB. Rectal Hem-o-Lok clip migration after robot-assisted laparoscopic radical prostatectomy. Can J Urol. 2009;16(6):4939–40.PubMedGoogle Scholar
  38. 38.
    Lucioni A, Valentin C, Gong EM, Orvieto MA, Gerber GS, Dachman AH, et al. Computed tomography appearance of the Lapra-Ty and Weck hem-o-lok clips in patients who recently underwent laparoscopic urologic surgery. J Comput Assist Tomogr. 2006;30(5):784–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Cohen J, Jayram G, Mullins JK, Ball MW, Allaf ME. Do fibrin sealants impact negative outcomes after robot-assisted partial nephrectomy? J Endourol. 2013;27(10):1236–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Agarwal MM, Mandal AK, Agarwal S, Lal A, Prakash M, Mavuduru R, et al. Surgicel granuloma: unusual cause of “recurrent” mass lesion after laparoscopic nephron-sparing surgery for renal cell carcinoma. Urology. 2010;76(2):334–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Hughes-Hallett A, Mayer EK, Pratt P, Mottrie A, Darzi A, Vale J. The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. Int J Med Robot. 2015;11(1):8–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Herrell SD, Galloway RL, Su LM. Image-guided robotic surgery: update on research and potential applications in urologic surgery. Curr Opin Urol. 2012;22(1):47–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Teber D, Guven S, Simpfendörfer T, Baumhauer M, Güven EO, Yencilek F, et al. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol. 2009;56(2):332–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Cheung CL, Wedlake C, Moore J, Pautler SE, Peters TM. Fused video and ultrasound images for minimally invasive partial nephrectomy: a phantom study. Med Image Comput Comput Assist Interv. 2010;13(Pt 3):408–15.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manish N. Patel
    • 1
  • Ram A. Pathak
    • 2
  • Ashok K. Hemal
    • 3
    Email author
  1. 1.Department of UrologyWake Forest University School of Medicine, Wake Forest University Health SciencesWinston-SalemUSA
  2. 2.Wake Forest University School of Medicine, Wake Forest University Health SciencesWinston SalemUSA
  3. 3.Department of Urology, Comprehensive Cancer Center, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical CenterWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations