Skip to main content

Credentialing and Hospital Privileging for Robotic Urological Surgery

  • Chapter
  • First Online:
Robotics in Genitourinary Surgery

Abstract

Robotic assisted surgery offers many benefits to the surgeon, hospital, and patient alike. As a result, there has been a rapidly growing demand for surgeons capable of performing robotic procedures such as Robotic assisted laparoscopic prostatectomy. However, there is a noted learning curve associated with achieving surgical proficiency, which makes it imperative to implement training and credentialing practices to ensure surgeons are properly equipped with the necessary prerequisite skills essential to conducting the procedure. Currently, there are no standardized guidelines for the training or credentialing of physicians. This chapter will describe current training and credentialing practices, including proctorship and preceptorship, and discuss the need for standard competency-based credentialing guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanuschik M. The technology of robotic surgery. In: Gharagozloo F, Najam F, editors. Robotic surgery. New York: McGraw Hill; 2009.

    Google Scholar 

  2. Badani KK, Kaul S, Menon M. Evolution of robotic radical prostatectomy: assessment after 2766 procedures. Cancer. 2007;110(9):1951–8.

    Article  PubMed  Google Scholar 

  3. Herrmann TR, Rabenalt R, Stolzenburg JU, Liatsikos EN, Imkamp F, Tezval H, et al. Oncological and functional results of open, robot-assisted and laparoscopic radical prostatectomy: does surgical approach and surgical experience matter? World J Urol. 2007;25(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  4. Boris RS, Kaul SA, Sarle RC, Stricker HJ. Radical prostatectomy: a single surgeon comparison of retropubic, perineal, and robotic approaches. Can J Urol. 2007;14(3):3566–70.

    PubMed  Google Scholar 

  5. Patel VR, Thaly R, Shah K. Robotic radical prostatectomy: outcomes of 500 cases. BJU Int. 2007;99(5):1109–12.

    Article  PubMed  Google Scholar 

  6. Finkelstein J, Eckersberger E, Sadri H, Taneja SS, Lepor H, Djavan B. Open versus laparoscopic versus robot-assisted laparoscopic prostatectomy: the european and US experience. Rev Urol. 2010;12(1):35–43.

    PubMed  PubMed Central  Google Scholar 

  7. Mirheydar HS, Parsons JK. Diffusion of robotics into clinical practice in the United States: process, patient safety, learning curves, and the public health. World J Urol. 2013;31(3):455–61.

    Article  PubMed  Google Scholar 

  8. Atug F, Castle EP, Srivastav SK, Burgess SV, Thomas R, Davis R. Positive surgical margins in robotic-assisted radical prostatectomy: impact of learning curve on oncologic outcomes. Eur Urol. 2006;49:866–71.

    Article  PubMed  Google Scholar 

  9. Klein EA, Bianco FJ, Serio AM, Eastham JA, Kattan MW, Pontes JE, et al. Surgeon experience is strongly associated with biochemical recurrence after radical prostatectomy for all preoperative risk categories. J Urol. 2008;179(6):2212–6. discussion 2216-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Budäus L, Sun M, Abdollah F, Zorn KC, Morgan M, Johal R, et al. Impact of surgical experience on in-hospital complication rates in patients undergoing minimally invasive prostatectomy: a population-based study. Ann Surg Oncol. 2011;18(3):839–47.

    Article  PubMed  Google Scholar 

  11. Tobias-Machado M, Mitre AI, Rubinstein M, da Costa EF, Hidaka AK. Robotic-assisted radical prostatectomy learning curve for experienced laparoscopic surgeons: does it really exist? Int Braz J Urol. 2016;42(1):83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Steinberg PL, Merguerian PA, Bihrle W III, Seigne JD. The cost of learning robotic-assisted prostatectomy. Urology. 2008;72:1068–72.

    Article  PubMed  Google Scholar 

  13. Budäus L, Morgan M, Abdollah F, Zorn KC, Sun M, Johal R, et al. Impact of annual surgical volume on length of stay in patients undergoing minimally invasive prostatectomy: a population-based study. Eur J Surg Oncol. 2011;37(5):429–34.

    Article  PubMed  Google Scholar 

  14. Wilt TJ, Shamliyan TA, Taylor BC, MacDonald R, Kane RL. Association between hospital and surgeon radical prostatectomy volume and patient outcomes: a systematic review. J Urol. 2008;180:820–9.

    Article  PubMed  Google Scholar 

  15. Benway BM, Bhayani SB. Surgical outcomes of robot-assisted partial nephrectomy. BJU Int. 2011;108:955–61.

    Article  PubMed  Google Scholar 

  16. Rogers CG, Metwalli A, Blatt AM, Bratslavsky G, Menon M, Linehan WM, et al. Robotic partial nephrectomy for renal hilar tumors: a multi-institutional analysis. J Urol. 2008;180(6):2353–6. discussion 2356

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mottrie A, De Naeyer G, Schatteman P, Carpentier P, Sangalli M, Ficarra V. Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol. 2010;58(1):127–32.

    Article  PubMed  Google Scholar 

  18. Hayn MH, Hussain A, Mansour AM, Andrews PE, Carpentier P, Castle E, et al. The learning curve of robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. Eur Urol. 2010;58(2):197–202.

    Article  PubMed  Google Scholar 

  19. Sorensen MD, Delostrinos C, Johnson MH, Grady RW, Lendvay TS. Comparison of the learning curve and outcomes of robotic assisted pediatric pyeloplasty. J Urol. 2011;185(6 Suppl):2517–22.

    Article  PubMed  Google Scholar 

  20. Brunaud L, Bresler L, Ayav A, Zarnegar R, Raphoz AL, Levan T, et al. Robotic-assisted adrenalectomy: what advantages compared to lateral transperitoneal laparoscopic adrenalectomy? Am J Surg. 2008;195(4):433–8.

    Article  PubMed  Google Scholar 

  21. Schroeck FR, de Sousa CA, Kalman RA, Kalia MS, Pierre SA, Haleblian GE, et al. Trainees do not negatively impact the institutional learning curve for robotic prostatectomy as characterized by operative time, estimated blood loss, and positive surgical margin rate. Urology. 2008;71(4):597–601.

    Article  PubMed  Google Scholar 

  22. Davis JW, Kamat A, Munsell M, Pettaway C, Pisters L, Matin S. Initial experience of teaching robot-assisted radical prostatectomy to surgeons-in-training: can training be evaluated and standardized? BJU Int. 2010;105(8):1148–54.

    Article  PubMed  Google Scholar 

  23. Thiel DD, Francis P, Heckman MG, Winfield HN. Prospective evaluation of factors affecting operating time in a residency/fellowship training program incorporating robot-assisted laparoscopic prostatectomy. J Endourol. 2008;22(6):1331–8.

    Article  PubMed  Google Scholar 

  24. McDougall EM, Corica FA, Chou DS, Abdelshehid CS, Uribe CA, Stoliar G, et al. Short-term impact of a robot-assisted laparoscopic prostatectomy ‘mini-residency’ experience on postgraduate urologists' practice patterns. Int J Med Robot. 2006;2(1):70–4.

    Article  PubMed  Google Scholar 

  25. Gamboa AJ, Santos RT, Sargent ER, Louie MK, Box GN, Sohn KH, et al. Long-term impact of a robot assisted laparoscopic prostatectomy mini fellowship training program on postgraduate urological practice patterns. J Urol. 2009;181(2):778–82.

    Article  PubMed  Google Scholar 

  26. Altunrende F, Autorino R, Haber GP, Laydner H, White MA, Khanna R, et al. Immediate impact of a robotic kidney surgery course on attendees practice patterns. Int J Med Robot. 2011;7(2):165–9.

    Article  PubMed  Google Scholar 

  27. Salamon C, Culligan P. The role of simulation as a training tool in robotic surgery. Presented at the 41st AAGL Global Congress on Minimally Invasive Gynecology. Las Vegas, NV; November 6, 2012. (Evidence Level III).

    Google Scholar 

  28. Itani KM, DePalma RG, Schifftner T, Sanders KM, Chang BK, Henderson WG, et al. Surgical resident supervision in the operating room and outcomes of care in Veterans Affairs hospitals. Am J Surg. 2005;190(5):725–31.

    Article  PubMed  Google Scholar 

  29. Kommu SS, Challacombe B, Ahmed K, Mohammed Shamim K, Dasgupta P. Evolving role of simulators and training in robotic urological surgery. London: INTECH Open Access Publisher; 2012.

    Google Scholar 

  30. Zorn KC, Gautam G, Shalhav AL, Clayman RV, Ahlering TE, Albala DM, et al. Training, credentialing, proctoring and medicolegal risks of robotic urological surgery: recommendations of the society of urologic robotic surgeons. J Urol. 2009;182(3):1126–32.

    Article  PubMed  Google Scholar 

  31. Lee JY, Mucksavage P, Sundaram CP, McDougall EM. Best practices for robotic surgery training and credentialing. J Urol. 2011;185(4):1191–7.

    Article  PubMed  Google Scholar 

  32. McElhinney B, Beard A, Karthigasu K, Hart R. Virtual reality simulation: a valuable adjunct to surgical training. London: INTECH Open Access Publisher; 2012.

    Google Scholar 

  33. Samia H, Khan S, Lawrence J, Delaney CP. Simulation and its role in training. Clin Colon Rectal Surg. 2013;26(1):47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhong W, Mancuso P. Utilization and surgical skill transferability of the simulator robot to the clinical robot for urology surgery. Urol Int. 2017;98(1):1–6.

    Article  PubMed  Google Scholar 

  35. Perrenot C, Perez M, Tran N, Jehl JP, Felblinger J, Bresler L, et al. The virtual reality simulator dV-Trainer(®) is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26:2587–93.

    Article  PubMed  Google Scholar 

  36. Lee JY, Mucksavage P, Kerbl DC, Huynh VB, Etafy M, McDougall EM. Validation study of a virtual reality robotic simulator-role as an assessment tool? J Urol. 2012;187:998–1002.

    Article  PubMed  Google Scholar 

  37. Whitehurst SV, Lockrow EG, Lendvay TS, Propst AM, Dunlow SG, Rosemeyer CJ, et al. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model). J Minim Invasive Gynecol. 2015;22(3):483–8.

    Article  PubMed  Google Scholar 

  38. Lerner MA, Ayalew M, Piene WJ, Sundaram CP. Does training on a virtual reality simulator improve performance on the da Vinci surgical system? J Endourol. 2010;24(3):467–72.

    Article  PubMed  Google Scholar 

  39. American Urology Association: Standard operating practices (SOP’s) for urologic robotic surgery. Education and Research, Inc. https://www.auanet.org/common/pdf/about/SOP-Urologic-Robotic-Surgery.pdf

  40. Lewis TM, Aggarwal R, Rajaretnam N, Grantcharov TP, Darzi A. Training in surgical oncology—the role of VR simulation. Surg Oncol. 2011;20(3):134–9.

    Article  CAS  PubMed  Google Scholar 

  41. Sachdeva AK, Russell TR. Safe introduction of new procedures and emerging technologies in surgery: education, credentialing, and privileging. Surg Oncol Clin N Am. 2007;16(1):101–14.

    Article  PubMed  Google Scholar 

  42. McDougall EM, Corica FA, Chou DS, Abdelshehid CS, Uribe CA, Stoliar G, et al. Short-term impact of a robot-assisted laparoscopic prostatectomy ‘mini-residency’ experience on postgraduate urologists’ practice patterns. Int J Med Robot. 2006;2(1):70–4.

    Article  PubMed  Google Scholar 

  43. Pradarelli JC, Campbell DA Jr, Dimick JB. Hospital credentialing and privileging of surgeons: a potential safety blind spot. JAMA. 2015;313(13):1313–4.

    Article  CAS  PubMed  Google Scholar 

  44. Gautam G, DeCastro GJ, Trinh QD, Zorn K. Training and credentialing in robotic urological surgery. In: Patel V, editor. Robotic urologic surgery. London: Springer; 2011. p. 19–33.

    Chapter  Google Scholar 

  45. Xeroulis G, Dubrowski A, Leslie K. Simulation in laparoscopic surgery: a concurrent validity study for FLS. Surg Endosc. 2009;23(1):161–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Albala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Hoof, A.G., Albala, D.M. (2018). Credentialing and Hospital Privileging for Robotic Urological Surgery. In: Hemal, A., Menon, M. (eds) Robotics in Genitourinary Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-20645-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20645-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20644-8

  • Online ISBN: 978-3-319-20645-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics