Skip to main content

Animal Laboratory Training: Current Status and How Essential Is It?

  • Chapter
  • First Online:
Robotics in Genitourinary Surgery

Abstract

In recent years, the emphasis of robotic training has moved outside of the operating room and into simulated environments. Three methods of robotic training have been utilized including inanimate, virtual reality, and animal models. Animal models provide the most high fidelity and complex training, but they are also expensive, may be inconsistent, and can require additional support such as veterinary staff and lab facilities. At present, no standardized or validated robotic training program exists and efficacy data on the various training methods is evolving. Animal model training appears to have utility in a comprehensive robotic training program with a defined role in higher-level procedure-based training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lepor H. Status of radical prostatectomy in 2009: is there medical evidence to justify the robotic approach? Rev Urol. 2009;11(2):61–70.

    PubMed  PubMed Central  Google Scholar 

  2. Intuitive Surgical. Investor relations. http://investor.intuitivesurgical.com/phoeniz.zhtml?c=122359&p=irol-irhome.

  3. Duchene DA, Moinzadeh A, Gill IS, Clayman RV, Winfield HN. Survey of residency training in laparoscopic and robotic surgery. J Urol. 2006;176:158–66. discussion 2167.

    Article  Google Scholar 

  4. Preston MA, Blew BD, Breau RH, Beiko D, Oake SJ, Watterson JD. Survey of senior resident training in urologic laparoscopy, robotics and endourology surgery in Canada. Can Urol Assoc J. 2010;4:42–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Scalese RJ, Obeso VT, Issenberg SB. Simulation technology for skills training and competency assessment in medical education. J Gen Intern Med. 2008;23(suppl. 1):46–9.

    Article  PubMed  Google Scholar 

  6. Scott DJ, Dunnington GL. The new ACS/APDS Skills Curriculum: moving the learning curve out of the operating room. J Gastrointest Surg. 2008;12:213–21.

    Article  PubMed  Google Scholar 

  7. Grillo HC. To impart this art: the development of graduate surgical education in the United States. Surgery. 1999;125(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  8. Amodeo A, Linares Quevedo A, Joseph JV, Belgrano E, Patel HR. Robotic laparoscopic surgery: cost and training. Minerva Urol Nefrol. 2009;61(2):121–8. Review.

    PubMed  CAS  Google Scholar 

  9. Birkmeyer JD. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42.

    Article  CAS  PubMed  Google Scholar 

  10. Samadi D, Levinson A, Hakimi A, Shabsigh R, Benson MC. From proficiency to expert, when does the learning curve for robotic-assisted prostatectomies plateau? The Columbia University experience. World J Urol. 2007;25(1):105–10.

    Article  PubMed  Google Scholar 

  11. Patel VR, Tully AS, Holmes R, Lindsay J. Robotic radical prostatectomy in the community setting—the learning curve and beyond: initial 200 cases. J Urol. 2005;174(1):269–72.

    Article  PubMed  Google Scholar 

  12. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;S70:81–3.

    Google Scholar 

  13. Moulton CA, Dubrowski A, Macrae H, Graham B, Grober E, Reznick R. Teaching surgical skills: what kind of practice makes perfect: A randomized, Controlled Trial. Ann Surg. 2006;244:400–9.

    PubMed  PubMed Central  Google Scholar 

  14. Cannon-Bowers JA, Bowers C, Procci K. Optimizing learning in surgical simulations: guidelines from the science of learning and human performance. Surg Clin North Am. 2010;90:583–603.

    Article  PubMed  Google Scholar 

  15. Lee JY, Mucksavage P, Sundaram CP, McDougall EM. Best practices for robotic surgery training and credentialing. J Urol. 2011;185:1191–7.

    Article  PubMed  Google Scholar 

  16. Fried GM. FLS assessment of competency using simulated laparoscopic tasks. J Gastrointest Surg. 2008;12(2):210–2.

    Article  PubMed  Google Scholar 

  17. Xeroulis G, Dubrowski A, Leslie K. Simulation in laparoscopic surgery: a concurrent validity study for FLS. Surg Endosc. 2009;23(1):161–5.

    Article  PubMed  Google Scholar 

  18. Sroka G, Feldman LS, Vassiliou MC, Kaneva PA, Fayez R, Fried GM. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room- a randomized controlled trial. Am J Surg. 2004;100(1):115–20.

    Article  Google Scholar 

  19. Feldman LS, Sherman V, Fried GM. Using simulators to assess laparoscopic competence: ready for widespread use? Surgery. 2004;135(1):28–42.

    Article  PubMed  Google Scholar 

  20. Sweet RM, Hananel D, Lawrenz F. A unified approach to validation, reliability, and education study design for surgical technical skills training. Arch Surg. 2010;145(2):197–201.

    Article  PubMed  Google Scholar 

  21. Goh AC, Joseph R, O’Malley M, et al. Development and validation of inanimate tasks for robotic surgical skills assessment and training. J Urol. 2010;183:516.

    Article  Google Scholar 

  22. Goh AC, Aghazadeh A, Mercado MA, Hung AJ, Pan MM, et al. Multi-institutional validation of fundamental inanimate robotic skills tasks. J Urol. 2015;194(6):1751–6.

    Article  PubMed  Google Scholar 

  23. Ramos P, Montez J, Tripp A, Ng CK, Gill IS, Hung AJ. Face, content construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014;113:836–42.

    Article  PubMed  Google Scholar 

  24. Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Sur Urol. 2016;69:1065–80.

    Google Scholar 

  25. Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015;115:336–45.

    Article  PubMed  Google Scholar 

  26. Hung AJ, Patil MB, Zehnder P, Cai J, Ng CK, Aron M, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187:630–7.

    Article  PubMed  Google Scholar 

  27. Whitehurst SV, Lockrow EG, Lendvay TS, Propst AM, Dunlow SG, Rosemeyer CJ, et al. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (swine model). J Minim Invasive Gynecol. 2015;22:483–8.

    Article  PubMed  Google Scholar 

  28. Vaccaro CM, Crisp CC, Fellner AN, Jackson C, Kleeman SD, Pavelka J. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial. Female Pelvic Med Reconstr Surg. 2013;19:266–70.

    Article  PubMed  Google Scholar 

  29. Goh AC, Goldfarb DW, Sander J, Miles BJ, Dunkin BJ. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187:247.

    Article  PubMed  Google Scholar 

  30. Aghazadeh MA, Jayaratna IS, Hung AJ, Pan MM, Desai MM, Gill IS, Goh AC. External validation of global evaluation assessment of robotic skills (GEARS). Surg Endosc. 2015;29:3261–6.

    Article  PubMed  Google Scholar 

  31. Rehman S, Raza SJ, Stegemann AP, Zeeck K, Din R, Llewellyn A, et al. Simulation-based robot-assisted surgical training: a health economic evaluation. Int J Surg. 2013;11(9):841–6.

    Article  PubMed  Google Scholar 

  32. Perrenot C, Perez M, Tran N, Jehl JP, Felblinger J, Bresler L, et al. The virtual reality simulator dV-Trainer is a valid assessment tool for robotic surgery skills. Surg Endos. 2012;26:2587–93.

    Article  Google Scholar 

  33. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST, et al. Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery. 2012;152(3):477–88.

    Article  PubMed  Google Scholar 

  34. Berry M, Hellstrom M, Gothlin J, Reznick R, Lonn L. Endovascular training with animals versus virtual reality systems: as economic analysis. J Vasc Interv Radiol. 2008;19:233–8.

    Article  PubMed  Google Scholar 

  35. A Frost and Sullivan report performed in conjunction with the American Hospital Association, Health Research and Educational Trust. Immersion Medical, Inc. Laparoscopy Accutouch System; 2004. Return on investment study for medical simulation training.

    Google Scholar 

  36. Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112:864.

    Article  PubMed  Google Scholar 

  37. Aghazadeh MA, Mercado MA, Pan MM, Miles BJ, Goh AC. Performance of robotic simulated skills tasks is positively associated with clinical robotic surgical performance. BJU Int. 2016;118(3):475–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin C. Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Craven, S., Goh, A.C. (2018). Animal Laboratory Training: Current Status and How Essential Is It?. In: Hemal, A., Menon, M. (eds) Robotics in Genitourinary Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-20645-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20645-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20644-8

  • Online ISBN: 978-3-319-20645-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics