Advertisement

The History of Robotic Surgery

  • Michael E. Moran
Chapter

Abstract

The rise of digital, intelligent technologies is just beginning to have the widespread and projected paradigm shifting effect that many futurists have predicted. The history of robots and mechanical methods of emulating our human activity began early in humanities civilization, perhaps with the Antikythera mechanism that was discovered in a ship wreck off the shores of the Greek island of the same name. This mechanism contained 30 interlocking gears that could calculate accurately the Sun, moon, eclipses, planetary locations and the dates of Olympiads. This represents some of the detailed history of the mechanisms of the past that have formed the foundation of current robotic surgery. It traces in some detail the foundations of this fascinating process of mechanizing human work, including that of surgery.

Keywords

Robotics History Surgery Technology Capek and Asimov 

References

  1. 1.
    Ruskin J. Selected writings. London: JM Dent-Everyman; 1995.Google Scholar
  2. 2.
    Moran ME. Law of accelerating returns. J Endourol. 2006;20(6):1–8.CrossRefGoogle Scholar
  3. 3.
    Clarke AC. Hazards of prophecy: the failure of imagination. From collection “profiles of the future: an inquiry into the limits of the possible”. Harper &Row: NewYork; 1962.Google Scholar
  4. 4.
    Moran ME. Rossum’s universal robots: not the machines. J Endourol. 2007;21(12):1399–402.CrossRefPubMedGoogle Scholar
  5. 5.
    2001: a space odyssey. 1968. Stanley Kubrick and Arthur C. Clarke, MGM.Google Scholar
  6. 6.
    Moran ME. Three laws of robotics and surgery. J Endourol. 2008;22(8):1–4.CrossRefGoogle Scholar
  7. 7.
    Bicentennial man. Isaac Asimov and Chris Columbus. 1492 pictures; 1999.Google Scholar
  8. 8.
    The terminator. James Cameron and Gale Anne Hurd. Hemdale Film; 1984.Google Scholar
  9. 9.
    Watson JD. The double helix: a personal account of the discovery of the structure of DNA. New York: Touchstone; 1986.Google Scholar
  10. 10.
    Gould SJ. Wonderful life. The burgess shale and the nature of history. New York: W.W. Norton & Co; 1989.Google Scholar
  11. 11.
    Sherwin BL. Golems among us. How a Jewish legend can help us navigate the biotech century. Chicago, IL: Ivan R Dee Publ.Google Scholar
  12. 12.
    Firoozi F, Moran ME, Capello S, Belarmino J, Kolios E, Perrotti M. Robotics in urology—the inevitable heritage of Hellenism. J Endourol. 2005;19(7):A118. 906.Google Scholar
  13. 13.
    Moran ME. Out of the darkness—two monks, two mythical humanoid machines. J Endourol. 2006;20(1):A228.Google Scholar
  14. 14.
    Moran ME. The da Vinci robot. J Endourol. 2006;20(12):986–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Moran ME. Jacques de Vaucanson: the father of surgical simulation. J Endourol. 2007;21(7):679–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Wood G. Edison’s eve. A magical history of the quest for mechanical life. New York: Anchor Books; 2002.Google Scholar
  17. 17.
    Shelley M. Frankenstein. New York: Dell; 1975.Google Scholar
  18. 18.
    The National Library of Medicine. Frankenstein: penetrating the secrets of nature. http://www.nlm.nih.gov/hmd/frankenstein/franktable.html. Accessed 14 June 2009.
  19. 19.
    Bedini SA. The role of automata in the history of technology. http://xroads.virginia.edu/~DRBR/b_edinihtml. Accessed 14 June 2009.
  20. 20.
    Standage T. The turk. The life and times of the famous eighteenth-century chess-playing machine. New York: Berkley Books; 2002.Google Scholar
  21. 21.
    Poe EA. Von Kempelen and his discovery; 1850.Google Scholar
  22. 22.
    Christopher J. Game over: Kasparov and the machine. TIME. 2004; Jan 22.Google Scholar
  23. 23.
    Edmonds IG. The magic man; the life of Robert-Houdin. T. Nelson Pub: Nashville; 1972.Google Scholar
  24. 24.
  25. 25.
    Tesla CM. A man out of time. New York: Simon & Schuster; 2001.Google Scholar
  26. 26.
    Belarmino J, Moran ME, Firoozi F, Capello S, Kolios E, Perrotti M. Tesla’s robot and the dawn of the current era. J Endourol. 2005;19(7):A214. 915Google Scholar
  27. 27.
    Walter WG. An imitation of life. Scientific American, 42–50. 1950.Google Scholar
  28. 28.
    Walter WG. A machine that learns. Scientific American, 60–63. 1951.Google Scholar
  29. 29.
    Bush V. As we may think. The Atlantic Monthly. 1945. www.press.umich.edu/jep/works/vbush/vbush0.shtml. Accessed 14 June 2009.
  30. 30.
    Xin M. Ancient science and technology: tang dynasty. http://www.pureinsight.org/pi/articles. Accessed 14 June 2009.
  31. 31.
    Xin M. Ancient Chinese technology: robots. http://www.pureinsight.org/pi/articles. Accessed 14 June 2009.
  32. 32.
    Ran S. Ancient Chinese technology: Han Zhihe, Ingenious craftsman who created flying mechanical birds. http://www.pureinsight.org/pi/articles. Accessed 14 June 2009.
  33. 33.
  34. 34.
  35. 35.
    http://www.cjn.or.jp/karakuri/. Accessed 14 June 2009.
  36. 36.
    Kara D. A culture of robots. http://www.roboticstrends.com. Accessed 14 June 2009.
  37. 37.
    Matthews J. Sony spring festival 2004 at Dediage. www.generation5.org/content/2004/mediage.asp. Accessed 14 June 2009.
  38. 38.
    Matus D. A robot in every home. http://www.hawaiibusiness.cc/hb72003/default.cfm. Accessed 14 June 2009.
  39. 39.
  40. 40.
  41. 41.
  42. 42.
  43. 43.
  44. 44.
    Spenser H. Faerie queene.v.1: 1596.Google Scholar
  45. 45.
    http://www.bibliomania.com. Accessed 14 June 2009.
  46. 46.
    Adams BD. Ballistic missile defense. New York: Elsevier; 1971.Google Scholar
  47. 47.
  48. 48.
  49. 49.
    Hart C. A directory of heavier-than-air flying machines in Western Europe, 850 BC–1783 AD from The Prehistory of Flight. http://www.cabinetmagazine.org/issues/11/assets/flight_chart.html. Accessed 14 June 2009.
  50. 50.
    Marion F. Attempts in ancient times to fly in the air. http://www.worldwideschool.org/library/books/tech/engineering/WonderfulBalloonAscnent. Accessed 14 June 2009.
  51. 51.
    Firoozi F, Moran ME, Capello S, Belarmino J, Kolios E, Perrotti M. Robotics in urology—the inevitable heritage of Hellenism. J Endourol. 2005;197:A118. 906.Google Scholar
  52. 52.
  53. 53.
  54. 54.
  55. 55.
    Curtis JR. 2000. The water organ and other related sound-producing automata. http://cfaonline.asu.edu/haefer/classes/564/464.papers/curtisjwaterorgan.html. Accessed 14 June 2009.
  56. 56.
    Homer. The Iliad. Fagles R, Tran. New York: Penguin Classics Edition; 1990.Google Scholar
  57. 57.
    Chappell U. History of World’s fairs. http://www.expomuseum.com. Accessed 14 June 2009.
  58. 58.
    Belarmino J, Moran ME, Faroozi F, Capella S, Kolios E, Perrotti M. Technology of robotics: rapidly changing methods. J Endourol. 2005;19(1):A69.Google Scholar
  59. 59.
    Ellis ES. The steam man of the Prairies. Beadle’s American Novel. 1868:No. 45.Google Scholar
  60. 60.
    A mechanical man. 1893. New York Times, 15 April.Google Scholar
  61. 61.
    Buckley D. 1868. Dederick’s steam man. http://www.davidbuckley.net/DB/HistoryMakers/1868DederickSteamMan.htm. Accessed 14 June 2009.
  62. 62.
  63. 63.
    Szondy D. http://davidszondy.com/future/robot/elektro1.htm. Accessed 14 June 2009.
  64. 64.
    Sex kittens go to college. 1960. Albert Zugsmith Productions.Google Scholar
  65. 65.
    http://www.expo2005.com. Accessed 14 June 2009.
  66. 66.
    Moran ME. Raymond Goertz—legacy to robotics. J Endourol. 2007;21(1):A141–2.Google Scholar
  67. 67.
    Angelo JA Jr. Robotics: a reference guide to new technology. New York: Greenwood Press; 2006.Google Scholar
  68. 68.
    Goertz RC. Fundamentals of general purpose remote manipulators. Nucleonics. 1952;1011:36–42.Google Scholar
  69. 69.
    Goertz R, Thompson R. Electronically controlled manipulator. Nucleonics. 1954;12(11):46–7.Google Scholar
  70. 70.
    Goertz R. Some work on manipulators systems at ANL: past, present, and a look at the future. ROSE Seminar. 1964; May 26–27.Google Scholar
  71. 71.
    Central Research Laboratories. History of telemanipulator development. http://www.centres.com/nuclear/manip/maniphis.htm. Accessed 14 June 2009.
  72. 72.
    Debut of a metal giant. 1969. TIME April 11.Google Scholar
  73. 73.
    Aylett R. Robots bringing intelligent machines to life? New York: Quarto Publishing; 2002.Google Scholar
  74. 74.
    Brooks RA. Flesh and machines: how robots will change us. Boston, MA: Vintage Books; 2003.Google Scholar
  75. 75.
    Menzel P, D’Aluisio F. Robo sapiens evolution of a new species. Cambridge: MIT Press; 2000.Google Scholar
  76. 76.
    Perkowitz S. Digital people from bionic humans to androids. Washington, DC: Joseph Henry Press; 2004.Google Scholar
  77. 77.
    Moran ME, Belarmino J, Firoozi F, Capello S, Kolios E, Perrotti M. Humanoid robotic surgery. J Endourol. 2005;191:A69.Google Scholar
  78. 78.
    Devol G. U.S. Patent 2,988,237. Programmed article transfer. Filed December 10, 1954 and issued June 13, 1961.Google Scholar
  79. 79.
    Engelberger J. Robots in service. Cambridge: MIT Press; 1989.CrossRefGoogle Scholar
  80. 80.
    Capella S, Moran ME, Belarmino J, Faroozi F, Kolios E, Perrotti M. Hollywood stereotypes and robotic surgery. J Endourol. 2005;197:A120. 907.Google Scholar
  81. 81.
    Morrison P, Morrison E. Charles Babbage and his calculating engines: selected writings by Charles Babbage and others. New York: Dover Publications; 1961.Google Scholar
  82. 82.
    Moran ME, Marsh C, Perrotti M. Jacques de Vaucanson: father of surgical simulation. J Endourol. 2006;201:A1.Google Scholar
  83. 83.
    Moran ME. Enlightenment via simulation—“croneology’s” first woman. J Endourol. 2010;24(1):5–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Le Boursier du Coudray AM. Abrégé de l’art des accouchements. Paris; 1759.Google Scholar
  85. 85.
    Rattner GN. The king’s midwife. A history and mystery of madame du Coudray. Berkeley, CA: Univ Calif Press; 1998.Google Scholar
  86. 86.
    Robot surgery pioneer receives professorship at Imperial College. http://www.imperial.ac.uk/P3176.htm. Accessed 14 June 2009.
  87. 87.
    Dasgupta P, Challacombe B, Murphy D, Khan MS. Coming full circle in robotic urology. BJU Int. 2006;97:4–5.CrossRefGoogle Scholar
  88. 88.
    Moran ME. Robotic surgery: urologic implications. J Endourol. 2003;17:695–708.CrossRefPubMedGoogle Scholar
  89. 89.
    Paul HA, Bargar WL, Mittlestadt B, et al. Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop. 1992;354:8–16.Google Scholar
  90. 90.
    Moran ME. Evolution of robotic arms. J Robotic Surg. 2007;1:103–11.CrossRefGoogle Scholar
  91. 91.
    Fisher SS, McGreevy MM, Humphries J, Robinett W. Virtual environmental display system. In: . In: Crow F, Pizer S, editors. Proceedings of the workshop on interactive 3-D graphics. 1; 1986. p. 1–12.Google Scholar
  92. 92.
    Green PS, Hill JH, Satava RM. Telepresence: dexterous procedures in a virtual operating field. Surg Endosc. 1991;57:192A.Google Scholar
  93. 93.
    Satava RM. History of robotic surgery. The early chronicles: a personal historical perspective. http://www.websurg.com/robotics/history.php. Accessed 14 June 2009.
  94. 94.
    Wang Y, Sackier J. Robotically enhanced surgery: from concept to development. Surg Endosc. 1996;8:63–6.Google Scholar
  95. 95.
    Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413:379–80.CrossRefPubMedGoogle Scholar
  96. 96.
    Moran ME, Marsh C, Perrotti M. Under the hood: the da Vinci® surgical systemTM. J Endourol. 2006;201:A223.Google Scholar
  97. 97.
    Ballantyne GH, Moll F. The da Vinci telerobotic surgical system: the virtual operating field and telepresence surgery. Surg Clin N Am. 2005;83:1293–304.CrossRefGoogle Scholar
  98. 98.
    Himpens J, Leman G, Cardiere GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12:1091.CrossRefPubMedGoogle Scholar
  99. 99.
    Schurr MO, Heyn SP, Menz W, Buess G. Endosystems—future perspectives for endoluminal surgery. Min Invas Ther Allied Technol. 1998;7:37–42.CrossRefGoogle Scholar
  100. 100.
    Buess G, Kipfmuller K, Hack D, Grussner R, Heintz A, Junginger A. Technique of transanal endoscopic microsurgery. Surg Endosc. 1988;2:71–5.CrossRefPubMedGoogle Scholar
  101. 101.
    Schurr MO, Kunert W, Neck J, Voges U, Buess GF. Telematics and telemanipulation in surgery. Min Invas Ther Allied Technol. 1998;7:97–103.CrossRefGoogle Scholar
  102. 102.
    Guber AE. Potential for microsystems in medicine. Min Invas Ther Allied Technol. 1995;4:267–75.Google Scholar
  103. 103.
    Goh PMY, Kok K. Microrobotics in surgical practice. Br J Surg. 1997;84:2–4.CrossRefPubMedGoogle Scholar
  104. 104.
    Flynn AM, Udayakumar KR, Barrett DS, McLurkin JD, Frank DL, Shectman AN. Tomorrow’s surgery: micromotors and microrobots for minimally invasive procedures. Min Invas Ther Allied Technol. 1998;7:343–52.CrossRefGoogle Scholar
  105. 105.
    Asimov I. I, Asimov: a Memoir. New York: Bantam Books; 1994.Google Scholar
  106. 106.
    Stewert DJ. An essay on the origins of cybernetics. http://www.hfr.org.uk/cybernetics-pages/origins.htm. Accessed 14 June 2009.
  107. 107.
    Bosenblueth A. Mind and brain: philosophy of science. Cambridge, MA: The MIT Press; 1967.Google Scholar
  108. 108.
    Fritz S, Editors of Scientific American. Understanding artificial intelligence. New York: Warner Books; 2002.Google Scholar
  109. 109.
    Hoddeson L, Daitch V. True genius. The life and science of John Bardeen. The only winner of two Nobel Prizes in physics. New York: Joseph Henry Press; 2002.Google Scholar
  110. 110.
    Minsky M. The society of the mind. New York: Simon & Schuster; 1985.Google Scholar
  111. 111.
    Kurzweil R. The age of spiritual machines. New York: Penguin Books; 1999.Google Scholar
  112. 112.
    Kheng NC. HIFU robot. http://mrcas.mpe.ntu.edu.sg/research/urobot/hifu.htm. Accessed 14 June 2009.
  113. 113.
    Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res. 2008;242(1–2):3–21.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Chow AY, Chow VY, Packo CH, Pollack JS, Peyman GA, Schuchard R. The artificial silicone retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Opthalmol. 2004;122:460–9.CrossRefGoogle Scholar
  115. 115.
    Clarke A. Natural born cyborg. Oxford: Oxford University Press; 2003.Google Scholar
  116. 116.
    Nicolelis MAL, Ghazanfar AA, Stambaugh CR, et al. Simultaneous encoding of tactile information by three primate cortical areas. Nat Neurosci. 1998;1:621–30.CrossRefPubMedGoogle Scholar
  117. 117.
    Wessberg J, Stambaugh CR, Kralic JD, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000;408:361–5.CrossRefPubMedGoogle Scholar
  118. 118.
    Mazlish B. The man–machine and artificial intelligence. http://www.stanford.edu/group/SHR/4-2/text/mazlish.html. Accessed 14 June 2009.
  119. 119.
    Millan JR, Renkens F, Mourino J, Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng. 2004;516:1026–33.CrossRefGoogle Scholar
  120. 120.
    Feynman RP. “Surely you’re joking, Mr. Feynman!” Adventures of a curious character. New York: W.W. Norton & Co; 1985.Google Scholar
  121. 121.
    Gribbin J, Gribbin M. Annus mirabilis. 1905, Albert Einstein, and the theory of relativity. New York: Chamberlin Bros; 2005.Google Scholar
  122. 122.
    Moran ME. From the bottom up—nanourology. J Endourol. 2007;211:A91.Google Scholar
  123. 123.
    Moran ME. Virtual reality—history and development. J Endourol. 2007;211:A150.Google Scholar
  124. 124.
    Check E. Proteomics and cancer. Running before we can walk. Nature. 2004;429:496–7.CrossRefPubMedGoogle Scholar
  125. 125.
  126. 126.
    Mostellar F. Assessing medical technologies. Washington, DC: National Academy Press; 1985.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael E. Moran
    • 1
  1. 1.Carolina Urology AssociatesSoutheast UrologyWhitevilleUSA

Personalised recommendations