Skip to main content

Virtual Reality-Based Learning Environments: Recent Developments and Ongoing Challenges

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9167))

Abstract

Virtual Reality (VR) technologies bring new opportunities and challenges to teaching and learning. Virtual Reality Learning Environment (VRLE), a VR-based interactive environment incorporating instructional design for educational purposes, nowadays draws great attention of interdisciplinary scholars. In this paper, we first introduce the current status of VRLE-based research studies from various perspectives and then summarise the on-going challenges based on previous research studies and our own experience in this research area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.velscience.com/

  2. 2.

    http://secondlife.com/

  3. 3.

    http://openwonderland.org/

References

  1. American Psychiatric Association et al. DSM-IV-TR: Diagnostic and statistical manual of mental disorders, text revision. American Psychiatric Association, Washington (2000)

    Google Scholar 

  2. Azevedo, Roger: Using hypermedia as a metacognitive tool for enhancing student learning? the role of self-regulated learning. Educ. Psychol. 40(4), 199–209 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chen, J.F., Warden, C.A., Tai, D.W.-S., Chen, F.-S., Chao, C.-Y.: Level of abstraction and feelings of presence in virtual space: business english negotiation in open wonderland. Comput. Educ. 57(3), 2126–2134 (2011)

    Article  Google Scholar 

  4. Cheng, Gary: Exploring students’ learning styles in relation to their acceptance and attitudes towards using second life in education: a case study in Hong Kong. Comput. Educ. 70, 105–115 (2014)

    Article  Google Scholar 

  5. Cheng, Y., Chiang, H.-C., Ye, J., Cheng, L.-H.: Enhancing empathy instruction using a collaborative virtual learning environment for children with autistic spectrum conditions. Comput. Educ. 55(4), 1449–1458 (2010)

    Article  Google Scholar 

  6. Clark, R.C., Nguyen, F., Sweller, J.: Efficiency in learning: evidence-based guidelines to manage cognitive load. John Wiley & Sons, San Francisco (2011)

    Google Scholar 

  7. Dillenbourg, P.: Collaborative-learning: Cognitive and Computational Approaches. In: Dillenbourg, P. (ed.) Collaborative-learning, pp. 1–19. Elsevier, ‎Amsterdam (1999)

    Google Scholar 

  8. Duncan, I., Miller, A., Jiang, S.: A taxonomy of virtual worlds usage in education. Br. J. Educ. Technol. 43(6), 949–964 (2012)

    Article  Google Scholar 

  9. Fowler, C.: Virtual reality and learning: where is the pedagogy? Br. J. Educ. Technol. 46(2), 412–422 (2014)

    Article  Google Scholar 

  10. Getchell, K., Alan Miller, J., Nicoll, R., Sweetman, R., Allison, C.: Games methodologies and immersive environments for virtual fieldwork. IEEE Trans. Learn. Technol. 3(4), 281–293 (2010)

    Article  Google Scholar 

  11. Girard, C., Ecalle, J., Magnan, A.: Serious games as new educational tools: how effective are they? a meta-analysis of recent studies. J. Comput. Assist. Learn. 29(3), 207–219 (2013)

    Article  Google Scholar 

  12. Girvan, C., Tangney, B., Savage, T.: Slurtles: supporting constructionist learning in second life. Comput. Educ. 61, 115–132 (2013)

    Article  Google Scholar 

  13. Hauptman, H.: Enhancement of spatial thinking with virtual spaces 1.0. Comput. Educ. 54(1), 123–135 (2010)

    Article  Google Scholar 

  14. Hwang, W.-Y., Shih-Shin, H.: Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Comput. Educ. 62, 308–319 (2013)

    Article  Google Scholar 

  15. Ip, H.H.-S., Byrne, J., Cheng, S.H., Kwok, R.C.-W.: The SAMAL model for affective learning: a multidimensional model incorporating the body, mind and emotion in learning. In: DMS, pp. 216–221 (2011)

    Google Scholar 

  16. Ip, H.H.-S., Byrne, J., Cheng, S.H., Kwok, R.C.-W., Lam, M.S.-W.: Smart ambience for affective learning (samal): Instructional design and evaluation. In: Workshop Proceedings of the 18th International Conference on Computers in Education: ICCE2010, p. 212 (2010)

    Google Scholar 

  17. Ip, H.H.-S., Byrne, J., Lau, K.S.-Y., Li, R.C., Tso, A., Choi, C.: Interactive sensory program for affective learning (InSPAL): an innovative learning program combining interactive media and virtual reality for severely intellectually disabled students. In: Cheung, S.K.S., Fong, J., Fong, W., Lee Wang, F., Kwok, L.F. (eds.) ICHL 2013. LNCS, vol. 8038, pp. 199–207. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Ip, H.H.S., Byrne, J.: A kinet-affective learning model for experiential learning in smart ambience. In: Cheung, S.K.S., Fong, J., Zhang, J., Kwan, R., Kwok, L.F. (eds.) ICHL 2014. LNCS, vol. 8595, pp. 16–23. Springer, Heidelberg (2014)

    Google Scholar 

  19. Jonassen, D.H.: Objectivism versus constructivism: do we need a new philosophical paradigm? Educ. Tech. Res. Dev. 39(3), 5–14 (1991)

    Article  Google Scholar 

  20. Keselman, H.J., Huberty, C.J., Lix, L.M., Olejnik, S., Cribbie, R.A., Donahue, B., Kowalchuk, R.K., Lowman, L.L., Petoskey, M.D., Keselman, J.C., et al.: Statistical practices of educational researchers: an analysis of their anova, manova, and ancova analyses. Rev. Educ. Res. 68(3), 350–386 (1998)

    Article  Google Scholar 

  21. Kirschner, P.A., Sweller, J., Clark, R.E.: Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educ. Psychol. 41(2), 75–86 (2006)

    Article  Google Scholar 

  22. Korallo, L., Foreman, N., Boyd-Davis, S., Moar, M., Coulson, M.: Can multiple spatial virtual timelines convey the relatedness of chronological knowledge across parallel domains? Comput. Educ. 58(2), 856–862 (2012)

    Article  Google Scholar 

  23. Lahav, O., Schloerb, D.W., Srinivasan, M.A.: Rehabilitation program integrating virtual environment to improve orientation and mobility skills for people who are blind. Comput. Educ. 80, 1–14 (2015)

    Article  Google Scholar 

  24. Lee, E.A.-L., Wong, K.W.: Learning with desktop virtual reality: low spatial ability learners are more positively affected. Comput. Educ. 79, 49–58 (2014)

    Article  MATH  Google Scholar 

  25. Lorenzo, C.-M., Sicilia, M.A., Sanchez, S.: Studying the effectiveness of multi-user immersive environments for collaborative evaluation tasks. Comput. Educ. 59(4), 1361–1376 (2012)

    Article  Google Scholar 

  26. Lorenzo, G., Pomares, J., Lledo, A.: Inclusion of immersive virtual learning environments and visual control systems to support the learning of students with asperger syndrome. Comput. Educ. 62, 88–101 (2013)

    Article  Google Scholar 

  27. Merchant, Z., Goetz, E.T., Keeney-Kennicutt, W., Cifuentes, L., Kwok, O.-M., Davis, T.J.: Exploring 3-D virtual reality technology for spatial ability and chemistry achievement. J. Comput. Assist. Learn. 29(6), 579–590 (2013)

    Article  Google Scholar 

  28. Merchant, Z., Goetz, E.T., Keeney-Kennicutt, W., Kwok, O.-M., Cifuentes, L., Davis, T.J.: The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: a structural equation modeling analysis. Comput. Educ. 59(2), 551–568 (2012)

    Article  Google Scholar 

  29. Mikropoulos, T.A., Natsis, A.: Educational virtual environments: a ten-year review of empirical research (1999–2009). Comput. Educ. 56(3), 769–780 (2011)

    Article  Google Scholar 

  30. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81 (1956)

    Article  Google Scholar 

  31. Moreno, R.: Does the modality principle hold for different media? a test of the method-affects-learning hypothesis. J. Comput. Assist. Learn. 22(3), 149–158 (2006)

    Article  Google Scholar 

  32. Okutsu, M., DeLaurentis, D., Brophy, S., Lambert, J.: Teaching an aerospace engineering design course via virtual worlds: a comparative assessment of learning outcomes. Comput. Educ. 60(1), 288–298 (2013)

    Article  Google Scholar 

  33. Paas, F., Renkl, A., Sweller, J.: Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instr. Sci. 32(1), 1–8 (2004)

    Article  Google Scholar 

  34. Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.M.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)

    Article  Google Scholar 

  35. Pardo, A., Kloos, C.D.: Subcollaboration: large-scale group management in collaborative learning. Softw. Pract. Experience 41(4), 449–465 (2011)

    Article  Google Scholar 

  36. Parsons, S., Cobb, S.: State-of-the-art of virtual reality technologies for children on the autism spectrum. Eur. J. Spec. Needs Educ. 26(3), 355–366 (2011)

    Article  Google Scholar 

  37. Patel, K.K., Vij, S.: Spatial learning using locomotion interface to virtual environment. IEEE Trans. Learn. Technol. 5(2), 170–176 (2012)

    Article  Google Scholar 

  38. Pedersen, S., Irby, T.: The VELscience project: Middle schooler’s engagement in student-directed inquiry within a virtual environment for learning. Comput. Educ. 71, 33–42 (2014)

    Article  Google Scholar 

  39. Riva, G.: Virtual reality in psychotherapy: review. Cyber psychol. Behav. 8(3), 220–230 (2005)

    Article  Google Scholar 

  40. San Diego, J.P., Cox, M.J., Quinn, B.F.A., Newton, J.T., Banerjee, A., Woolford, M.: Researching haptics in higher education: the complexity of developing haptics virtual learning systems and evaluating its impact on students learning. Comput. Educ. 59(1), 156–166 (2012)

    Article  Google Scholar 

  41. Savery, J.R., Duffy, T.M.: Problem based learning: an instructional model and its constructivist framework. Educ. Technol. 35(5), 31–38 (1995)

    Google Scholar 

  42. Seymour, N.E., Gallagher, A.G., Roman, S.A., OBrien, M.K., Bansal, V.K., Andersen, D.K., Satava, R.M.: Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann. Surg. 236(4), 458–463 (2002)

    Article  Google Scholar 

  43. Standen, P.J., Brown, D.J.: Virtual reality in the rehabilitation of people with intellectual disabilities: review. Cyber Psychol. Behav. 8(3), 272–282 (2005)

    Article  Google Scholar 

  44. Steuer, Jonathan: Defining virtual reality: dimensions determining telepresence. J. commun. 42(4), 73–93 (1992)

    Article  Google Scholar 

  45. Van Merrienboer, Jeroen J.G., Sweller, John: Cognitive load theory and complex learning: recent developments and future directions. Educ. Psychol. Rev. 17(2), 147–177 (2005)

    Article  Google Scholar 

  46. Van Merrienboer, J.J.G., Schuurman, J.G., De Croock, M.B.M., Paas, F.G.W.C.: Redirecting learners’ attention during training: effects on cognitive load, transfer test performance and training efficiency. Learn. Instr. 12(1), 11–37 (2002)

    Article  Google Scholar 

  47. Vogel-Walcutt, J.J., Gebrim, J.B., Bowers, C., Carper, T.M., Nicholson, D.: Cognitive load theory vs. constructivist approaches: which best leads to efficient, deep learning? J. Comput. Assist. Learn. 27(2), 133–145 (2011)

    Article  Google Scholar 

  48. Winn, William: The Impact of Three-Dimensional Immersive Virtual Environments On Modern Pedagogy. University of Washington, Human Interface Technology Laboratory, Seattle (1997)

    Google Scholar 

  49. Wu, W.-H., Hsiao, H.-C., Wu, P.-L., Lin, C.-H., Huang, S.-H.: Investigating the learning- theory foundations of game-based learning: a meta-analysis. J. Comput. Assist. Learn. 28(3), 265–279 (2012)

    Article  Google Scholar 

  50. Yeh, S.-C., Wang, J.-L., Wang, C.-Y., Lin, P.-H., Chen, G.-D., Rizzo, A.: Motion controllers for learners to manipulate and interact with 3D objects for mental rotation training. Br. J. Educ. Technol. 45(4), 666–675 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank our colleagues, Ms. Julia Byrne and Ms. Kate S Y Lau, of Centre for Innovative Applications of Internet and Multimedia Technologies (AIMtech Centre) and Department of Computer Science, City University of Hong Kong, for their contribution to our research studies on VRLEs for general and special education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horace H. S. Ip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ip, H.H.S., Li, C. (2015). Virtual Reality-Based Learning Environments: Recent Developments and Ongoing Challenges. In: Cheung, S., Kwok, Lf., Yang, H., Fong, J., Kwan, R. (eds) Hybrid Learning: Innovation in Educational Practices. ICHL 2015. Lecture Notes in Computer Science(), vol 9167. Springer, Cham. https://doi.org/10.1007/978-3-319-20621-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20621-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20620-2

  • Online ISBN: 978-3-319-20621-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics