Enhancing the Learning Success of Engineering Students by Virtual Experiments

  • Max HoffmannEmail author
  • Lana Plumanns
  • Laura Lenz
  • Katharina Schuster
  • Tobias Meisen
  • Sabina Jeschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9192)


In a world that is characterized by highly specialized industry sectors, the demand for well-educated engineers increases significantly. Thus, the education of engineering students has become a major field of interest for universities. However, not every university is able to provide the required number of industry demonstrators to impart the needed practical knowledge to students. Our aim is to fill this gap by establishing Remote Labs. These laboratory experiments are performed in Virtual Reality environments which represent real laboratories accessible from different places. Following the implementation of such Remote Labs described within our past publications the aim of this contribution is to examine and evaluate possibilities of controlling Remote Labs from arbitrary locations. These control mechanisms are based on the virtualization of two concurrently working six-axis robots in combination with a game pad remote controller. The evaluation of the virtual demonstrator is carried out in terms of a study that is based on practical tests and questionnaires to measure the learning success.


Virtual reality Remote laboratories Game-based learning Experiential learning Virtual theatre Immersion 



This work was supported by the German Research Foundation (DFG) within the project ELLI (Excellent Teaching and Learning within engineering sciences) at RWTH Aachen University in terms of investigating laboratory experiments and Remote Labs.


  1. 1.
    Hoffmann, M., Schuster, K., Schilberg, D., Meisen, T.: Next-generation teaching and learning using the virtual theatre. In: Gregory, S.; Jerry, P.; Taveres Jones, N. (eds.) At the Edge of the Rift (2014)Google Scholar
  2. 2.
    Hoffmann, M., Schuster, K., Schilberg, D., Jeschke, S.: Bridging the gap between students and laboratory experiments. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014, Part II. LNCS, vol. 8526, pp. 39–50. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Hoffmann, M., Meisen, T., Jeschke, S.: Shifting virtual reality to the next level. Experiencing remote laboratories through mixed reality. In: The International Conference on Computer Science, Computer Engineering, and Education Technologies, CSCEET 2014 (2014)Google Scholar
  4. 4.
    Meier, C., Seufert, S.: Game-based learning. erfahrungen mit und perspektiven für digitale lernspiele in der betrieblichen bildung. In: Hohenstein, A., Wilbers, K. (eds.) Handbuch E-Learning. Deutscher, Köln (2005)Google Scholar
  5. 5.
    Csikszentmihalyi, M.: Finding. Flow The Psychology of Engagement with Everyday Life. Basic Books, New York (1997)Google Scholar
  6. 6.
    Csikszentmihalyi, M.: Creativity: Flow and the psychology of discovery and invention. Accessed 12 January 2015
  7. 7.
    Bracken, C., Skalski, P.: Telepresence and Video Games. The Impact of Image Quality (2015). Accessed 12 January 2015
  8. 8.
    Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.: Measuring and defining the experience of immersion in games. Int. J. Hum Comput Stud. 66(9), 641–661 (2008)CrossRefGoogle Scholar
  9. 9.
    Matthews, G., Deary, I.J., Whiteman, M.C.: Personality Traits, 2nd edn. Cambridge, New York (2003)CrossRefGoogle Scholar
  10. 10.
    Vorderer, P., Wirth, W., Gouveia, F. R., Biocca, F., Saari, T., Jäncke, F., Böcking, S., Schramm, H., Gysbers, A., Hartmann, T., Klimmt, C., Laarni, J., Ravaja, N., Sacau, A., Baumgartner, T., Jäncke, P.: MEC Spatial presence questionnaire (MEC-SPQ): short documentation and instructions for application. Report to the European Community, Project Presence. In: MEC (IST-2001-37661)Google Scholar
  11. 11.
    Laarni, J., Ravaja, N., Saari, T.: Presence experience in mobile gaming. In: Proceedings of DiGRA 2005 Conference: Changing Views – Worlds in Play (2005)Google Scholar
  12. 12.
    Weibel, D., Wissmath, B.: Immersion in computer games: the role of spatial presence and flow. Int. J. Comput. Games Technol. 2011(3), 1–14 (2011)CrossRefGoogle Scholar
  13. 13.
    Göbel, S., Müller, W., Urban, B., Wiemeyer, J. (eds.): GameDays 2012 and Edutainment 2012. LNCS, vol. 7516. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Witte, M., Kober, S.E., Ninaus, M., Neuper, C., Wood, G.: Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. hum. neurosci. 7, 478 (2013)CrossRefGoogle Scholar
  15. 15.
    Burde, W., Blankertz, B.: Is the locus of control of reinforcement a predictor of brain-computer interface performance. In: Proceedings of the 3rd International Braincomputer Inferface Workshop and Training Course, Graz, pp. 76–77 (2005)Google Scholar
  16. 16.
    Wakolbinger, J., Kirchner, P.: NetAvatar – Interaktion mit einem humanoiden Roboter. Accessed: 15 February 2015
  17. 17.
    Hoffmann, M., Schuster, K., Schilberg, D., Jeschke, S.: Next-generation teaching and learning using the virtual theatre. In: 4th Global Conference on Experiential Learning in Virtual Worlds Prague, Czech Republic (2014)Google Scholar
  18. 18.
    OculusVR. Accessed 11 February 2015
  19. 19.
  20. 20.
    Münzer, S., Hölscher, C.: Entwicklung und validierung eines fragebogens zu räumlichen strategien. Diagn. 57(3), 111–125 (2011)CrossRefGoogle Scholar
  21. 21.
    Schuster, K., Hoffmann, M., Bach, U., Richert, A., Jeschke, S.: Diving in? how users experience virtual environments using the virtual theatre. In: Marcus, A. (ed.) DUXU 2014, Part II. LNCS, vol. 8518, pp. 636–646. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Beier, G.: Kontrollüberzeugungen im Umgang mit Technik: Ein Persönlichkeitsmerkmal mit Relevanz für die Gestaltung technischer Systeme, Diss. Berlin (2004)Google Scholar
  23. 23.
    Rammstedt, B., John, O.P.: Kurzversion des big five inventory (BFI-K). Diagn. 51(4), 195–206 (2005)CrossRefGoogle Scholar
  24. 24.
    Rheinberg, F., Engeser, S., Vollmeyer, R.: Measuring components of flow: the flow-short-scale. In: Proceedings of the 1st International Positive Psychology Summit, Washington, D.C. (2002) Google Scholar
  25. 25.
    Rheinberg, F., Vollmeyer, R., Engeser, S.: Die Erfassung des Flow-Erlebens. In: Stiensmeier-Pelster, R., Rheinberg, F. (eds.) Diagnostik von Motivation und Selbstkonzept. Hogrefe, Göttingen (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Max Hoffmann
    • 1
    Email author
  • Lana Plumanns
    • 1
  • Laura Lenz
    • 1
  • Katharina Schuster
    • 1
  • Tobias Meisen
    • 1
  • Sabina Jeschke
    • 1
  1. 1.Institute of Information Management in Mechanical Engineering, Center for Learning and Knowledge ManagementRWTH Aachen UniversityAachenGermany

Personalised recommendations