Skip to main content

Can Psychometric Measurement Models Inform Behavior Genetic Models? A Bayesian Model Comparison Approach

  • Conference paper
Dependent Data in Social Sciences Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 145))

Abstract

As methodologists have increasingly noted, the role of psychometrics in operationalizing a construct is often overlooked when evaluating research claims (Borsboom, 2006). In a related vein, others have noted that psychological research appears to move away from assessment and interpretation of a single a priori statistical model to a more nuanced comparison of models which assess the trade-off between a model’s parsimony and complexity in explaining behavior (e.g., Rodgers, 2010). The genetic factor model is one such statistical model often used to estimate the relative contributions of genetic and environmental components of observed behavior in genetically informative designs (Heath, Neale, Hewitt, Eaves, & Fulker, 1989; Martin, Eaves et al., 1977; Neale & Cardon, 1992). Mathematically, the genetic factor model decomposes observed phenotypic variability into additive genetic (A), common (C), and unique (E) environmental components and is, for that reason, often referred to as the ACE model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that when all Bayesian models which included a common environmental effect failed to find environmental effects greater than zero, regardless of whether a tau equivalent, congeneric or random intercept model was used to model the component.

References

  • Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 422, 669–679.

    Article  MathSciNet  Google Scholar 

  • Alessandri, G., Caprara, G. V., & Tisak, J. (2012). A unified latent curve, latent state-trait analysis of the developmental trajectories and correlates of positive orientation. Multivariate Behavioral Research, 47, 341–368. doi:10.1080/00273171.2012.673954.

    Article  Google Scholar 

  • Allison, D. B., Kaprio, J., Korkeila, M., Koskenvuo, M., Neale, M. C., & Hayakawa, K. (1996). The heritability of body mass index among an international sample of monozygotic twins reared apart. International Journal of Obesity, 20, 501–506.

    Google Scholar 

  • Bolker, B., Brooks, M., Clark, C., Geange, S., Poulsen, J., Stevens, M., et al. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135. doi:10.1016/j.tree.2008.10.008.

    Article  Google Scholar 

  • Boomsma, A. (1982). The robustness of LISREL against small sample sizes in factor analysis models. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction (pp. 149–173). Amsterdam: North-Holland.

    Google Scholar 

  • Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71, 425–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Carey, G., & DiLalla, D. L. (1994). Genetics, personality, and psychopathology. Journal of Abnormal Psychology, 103, 32–43.

    Article  Google Scholar 

  • Carey, G., Goldsmith, H. H., Tellegen, A., & Gottesman, I. I. (1978). Genetics and personality inventories: The limits of replication with twin data. Behavior Genetics, 8(4), 299–313.

    Article  Google Scholar 

  • Chan, J. C. C., & Jeliazkov, I. (2009). Efficient simulation and integrated likelihood estimation in state space models. International Journal of Mathematical Modelling and Numerical Optimisation, 1(1), 101–120.

    Article  MATH  Google Scholar 

  • Chang, Z., Lichtenstein, P., Asherson, P. J., & Larsson, H. (2013). Developmental twin study of attention problems: High heritabilities throughout development. JAMA Psychiatry, 70(3), 311–318.

    Article  Google Scholar 

  • Cho, S. B., Wood, P. K., & Heath, A. (2009). Decomposing group differences of latent means of ordered categorical variables with the genetic factor model. Behavior Genetics, 39, 101–122.

    Article  Google Scholar 

  • Chou, C. P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44, 347–357.

    Article  Google Scholar 

  • Congdon, P., & Congdon, P. (2003). Applied Bayesian modelling (Vol. 394). New York: Wiley.

    Book  MATH  Google Scholar 

  • Davis-Stober, C. P. (2011). A geometric analysis of when fixed weighting schemes will outperform ordinary least squares. Psychometrika, 76(4), 650–669.

    Article  MathSciNet  MATH  Google Scholar 

  • Dolan, C., Molenaar, P., & Boomsma, D. (1989). LISREL analysis of twin data with structured means. Behavior Genetics, 19(1), 51–62.

    Article  Google Scholar 

  • Dolan, C. V., Molenaar, P. C., & Boomsma, D. I. (1992). Decomposition of multivariate phenotypic means in multigroup genetic covariance structure analysis. Behavior Genetics, 22(3), 319–335.

    Article  Google Scholar 

  • Dolan, C. V., Molenaar, P. C. M., & Boomsma, D. I. (1994). Simultaneous genetic analysis of means and covariance structure: Pearson-Lawley selection rules. Behavior Genetics, 24, 17–24.

    Article  Google Scholar 

  • Eaves, L., Erkanli, A., Silberg, J., Angold, A., Maes, H. H., & Foley, D. (2005). Application of Bayesian inference using Gibbs sampling to item-response theory modelling of multi-symptom genetic data. Behavior Genetics, 35(6), 765–780. doi:10.1007/s10519-005-7284-z.

    Article  Google Scholar 

  • Elks, C. E., Den Hoed, M., Zhao, J. H., Sharp, S. J., Wareham, N. J., Loos, R. J., et al. (2012). Variability in the heritability of body mass index: A systematic review and meta-regression. Frontiers in Endocrinology, 3, 29. doi:10.3389/fendo.2012.00029.

    Article  Google Scholar 

  • Erosheva, E. A., & Curtis, S. M. (2013). Dealing with rotational invariance in Bayesian confirmatory factor analysis. Technical report #589, Seattle, WA: Department of Statistics, University of Washington. http://www.stat.washington.edu/research/reports/2011/tr589.pdf

  • Franić, S., Dolan, C. V., Borsboom, D., Hudziak, J. J., van Beijsterveldt, C. E. M., & Boomsma, D. I. (2013). Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling. Psychological Methods, 18, 406. doi:10.1037/a0032755.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., & Vehtari, A. (2013). Bayesian data analysis (3rd ed.). New York: CRC press.

    Google Scholar 

  • Gelman, A., & Meng, X. L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13(2), 163–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(6), 721–741. doi:10.1109/TPAMI.1984.4767596.

    Article  Google Scholar 

  • Grimm, K. J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural Equation Modeling, 16(4), 676–701. doi:10.1080/10705510903206055.

    Article  MathSciNet  Google Scholar 

  • Guo, G., & Wang, J. (2002). The mixed or multilevel model for behavior genetic analysis. Behavior Genetics, 32(1), 37–49.

    Article  Google Scholar 

  • Heath, A. C., Eaves, L. J., & Martin, N. G. (1989). The genetic structure of personality III. Multivariate genetic item analysis of the EPQ scales. Personality and Individual Differences, 10(8), 877–888.

    Article  Google Scholar 

  • Heath, A. C., Jardin, R., Eaves, L. J., & Martin, N. G. (1989). The genetic structure of personality II: Genetic item analysis of the EPQ. Personality & Individual Differences, 10, 615–624.

    Article  Google Scholar 

  • Heath, A., Neale, M., Hewitt, J., Eaves, L., & Fulker, D. (1989). Testing structural equation models for twin data using LISREL. Behavior Genetics, 19(1), 9–35.

    Article  Google Scholar 

  • Henderson, N. D. (1982). Human behavior genetics. Annual Review of Psychology, 33, 403–440.

    Article  Google Scholar 

  • Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. Sociological Methods and Research, 26, 329–367.

    Article  Google Scholar 

  • Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351–362.

    Article  Google Scholar 

  • Joseph, J., & Ratner, C. (2013). The fruitless search for genes in psychiatry and psychology: Time to re-examine a paradigm. In S. Krimsky & J. Gruber (Eds.), Genetic explanations: Sense and nonsense (pp. 94–106). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data analysis in social psychology. In D. Gilbert, S. Fiske, & G. Lindsey (Eds.), Handbook of social psychology (4th ed., Vol. 1, pp. 233–265). Boston: McGraw-Hill.

    Google Scholar 

  • Kenny, D. A., & Milan, S. (2013). Identification: A non-technical discussion of a technical issue. In R. Hoyle, D. Kaplan, G. Marcoulides, & S. West (Eds.), Handbook of structural equation modeling (pp. 145–163). New York: Guilford.

    Google Scholar 

  • Lee, S. Y. (1980). Estimation of covariance structure models with parameters subject to functional restraints. Psychometrika, 45(3), 309–324.

    Article  MATH  Google Scholar 

  • Lee, S. Y. (2007). Structural equation modelling: A Bayesian approach. New York: John Wiley.

    Book  Google Scholar 

  • Lee, S. Y., & Song, X. Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39(4), 653–686.

    Article  Google Scholar 

  • Lindley, D. V. (1977). A problem in forensic science. Biometrika, 64(2), 207–213.

    Article  MathSciNet  Google Scholar 

  • Loehlin, J. C. (1996). The Cholesky approach: A cautionary note. Behavior Genetics, 26, 65–69.

    Article  Google Scholar 

  • Loehlin, J. C., & Martin, N. G. (2013). General and supplementary factors of personality in genetic and environmental correlation matrices. Personality and Individual Differences, 54, 761–766.

    Article  Google Scholar 

  • Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Ludeke, S., Johnson, W., & Bouchard, T. J. (2013). “Obedience to traditional authority:” A heritable factor underlying authoritarianism, conservatism and religiousness. Personality and Individual Differences, 55, 375–380.

    Article  Google Scholar 

  • Martin, N. G., & Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity, 38(1), 79–95.

    Article  Google Scholar 

  • Martin, N., Scourfield, J., & McGuffin, P. (2002). Observer effects and heritability of childhood attention-deficit hyperactivity disorder symptoms. British Journal of Psychiatry, 180, 260–265.

    Article  Google Scholar 

  • Maydeu-Olivares, A., & Coffman, D. L. (2006). Random intercept item factor analysis. Psychological Methods, 11(4), 344.

    Article  Google Scholar 

  • Meng, X. L. (1994). Posterior predictive p-values. The Annals of Statistics, 22(3), 1142–1160.

    Article  MathSciNet  MATH  Google Scholar 

  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107–122.

    Article  MathSciNet  Google Scholar 

  • Muthén, B. (2010). Bayesian analysis in Mplus: A brief introduction. Retrieved from https://www.statmodel.com/download/IntroBayesVersion%203.pdf

  • Muthén, B., & Asparouhov, T. (2011). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313–335. doi:10.1037/a0026802.

    Article  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998–2010). Mplus user’s guide (6th ed.). Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  • Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. New York: Springer.

    Book  Google Scholar 

  • Phillips, K., & Matheny, A. P. (1997). Evidence for genetic influence on both cross-situation and situation-specific components of behavior. Journal of Personality and Social Psychology, 21(1), 129–138.

    Article  Google Scholar 

  • Ram, N., & Grimm, K. J. (2009). Growth mixture modeling: A method for identifying differences in longitudinal change among unobserved groups. International Journal of Behavioral Development, 33(6), 565–576. doi:10.1177/0165025409343765.

    Article  Google Scholar 

  • Rietveld, M. J., Posthuma, I. D., Dolan, C. V., & Boomsma, D. I. (2003). ADHD: Sibling interaction or dominance: An evaluation of statistical power. Behavior Genetics, 33(3), 247–255.

    Article  Google Scholar 

  • Rindskopf, D. (1984). Structural equation models. Sociological Methods & Research, 13(1), 109–119.

    Article  Google Scholar 

  • Roberson-Nay, R., Moruzzi, S., Ogliari, A., Pezzica, E., Tambs, K., Kendler, K. S., et al. (2013). Evidence for distinct genetic effects associated with response to 35% CO2. Depression and Anxiety, 30(3), 259–266. doi:10.1002/da.22038.

    Article  Google Scholar 

  • Rodgers, J. L. (2010). The epistemology of mathematical and statistical modeling: A quiet methodological revolution. American Psychologist, 65(1), 1–12. doi:10.1037/a0018326.

    Article  Google Scholar 

  • Sato, M. (1987). Pragmatic treatment of improper solutions in factor analysis. Annals of the Institute of Statistical Mathematics, 39(1), 443–455.

    Article  Google Scholar 

  • Savalei, V., & Kolenikov, S. (2008). Constrained versus unconstrained estimation in structural equation modeling. Psychological Methods, 13(2), 150–170.

    Article  Google Scholar 

  • Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, J. Q., & Lee, S. Y. (1998). Bayesian sampling-based approach for factor analysis models with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology, 51(2), 233–252.

    Article  Google Scholar 

  • Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. British Journal of Mathematical and Statistical Psychology, 27, 229–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583–639.

    Article  MATH  Google Scholar 

  • Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9(5), 160–164.

    Article  Google Scholar 

  • Visscher, P. M., Gordon, S., & Neale, M. C. (2008). Power of the classical twin design revisited: II Detection of common environmental variance. Twin Research and Human Genetics, 11, 48–54.

    Article  Google Scholar 

  • Waldron, M., Bucholz, K. K., Lynskey, M. T., Madden, P. A. F., & Heath, A. C. (2013). Alcoholism and timing of separation in parents: Findings in a Midwestern birth cohort. Journal of Studies on Alcohol and Drugs, 74, 337–348.

    Article  Google Scholar 

  • Zhang, Z., Hamagami, F., Wang, L., Nesselroade, J. R., & Grimm, K. J. (2007). Bayesian analysis of longitudinal data using growth curve models. International Journal of Behavioral Development, 31(4), 374–383. doi:10.1177/016502540707776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip K. Wood .

Editor information

Editors and Affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

327149_1_En_10_MOESM1_ESM.docx

Mplus Program for Fitting Bayesian One-Factor ACE model & Mplus Program for Fitting Final Bayesian Random Intercept Model for Simulated Data (DOCX 25 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, T., Wood, P.K., Heath, A.C. (2015). Can Psychometric Measurement Models Inform Behavior Genetic Models? A Bayesian Model Comparison Approach. In: Stemmler, M., von Eye, A., Wiedermann, W. (eds) Dependent Data in Social Sciences Research. Springer Proceedings in Mathematics & Statistics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-20585-4_10

Download citation

Publish with us

Policies and ethics