Skip to main content

Modelling QTL-Trait-Crop Relationships: Past Experiences and Future Prospects

  • Chapter
Crop Systems Biology

Abstract

Ecophysiological crop models have long been used to understand crop responses to environmental factors and to crop management practices, by integrating quantitative functional relationships for various physiological processes. In view of the potential added value of robust crop modelling to classical quantitative genetics, model-input parameters are increasingly considered to represent ‘genetic coefficients’, which are environment-independent and amenable to selection. Likewise, modern molecular genetics can enhance applications of ecophysiological modelling in breeding design by elucidating the genetic basis of model-input parameters. A number of case studies, in which the effects of quantitative trait loci (QTL) have been incorporated into existing ecophysiological models to replace model-input parameters, have shown promise of using these QTL-based models in analysing genotype-phenotype relationships of more complex crop traits. In this chapter, we will review recent research achievements and express our opinions on perspectives for QTL-based modelling of genotype-by-environment interactions and even epistasis on complex traits at crop level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi S, Baptista L, Sueyoshi T, Murata K, Yamamoto T, Ebitani T, Ookawa T, Hirasawa T (2014) Introgression of two chromosome regions for leaf photosynthesis from an indica rice into background of a japonica rice. J Exp Bot 65:2049–2056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T, Yamamoto T, Ookawa T, Miyake H, Yano M, Hirasawa T (2013) The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. J Exp Bot 64:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal PK, Kropff MJ, Cassman KG, ten Berge HFM (1997) Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. Field Crops Res 51:5–17

    Article  Google Scholar 

  • Amelong A, Gambin B, Severini AD, Borrás L (2015) Predicting maize kernel number using QTL information. Field Crops Res 172:119–131

    Google Scholar 

  • Baenziger PS, McMaster GS, Wilhelm WW, Weiss A, Hays CJ (2004) Putting genes into genetic coefficients. Field Crops Res 90:133–143

    Article  Google Scholar 

  • Bertin N, Martre P, Génard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61:955–967

    Article  PubMed  CAS  Google Scholar 

  • Bogard M, Ravel C, Paux E, Bordes J, Balfourier F, Chapman SC, Le Gouis J, Allard V (2014) Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J Exp Bot 65:5849–5865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boote KJ, Tollenaar M (1994) Modeling genetic yield potential. In: Boote KJ et al (eds) Physiology and determination of crop yield. ASA/CSSA/SSSA, Madison, pp 533–565

    Google Scholar 

  • Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modelling of traits in plants: implications for genetic improvement. Agric Syst 70:395–420

    Article  Google Scholar 

  • Buck-Sorlin GH (2002) The search for QTL in barley (Hordeum vulgare L.) using a new mapping population. Cell Mol Biol Lett 7:523–535

    PubMed  CAS  Google Scholar 

  • Chapman SC, Cooper M, Podlich D, Hammer GL (2003) Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron J 95:99–113

    Article  Google Scholar 

  • Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a “gene-to-phenotype” modeling approach. Genetics 183:1507–1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  PubMed  CAS  Google Scholar 

  • Dingkuhn M, de Vries Penning FWT, Miezan KM (1993) Improvement of rice plant type concepts: systems research enables interaction of physiology and breeding. In: de Vries Penning FWT et al (eds) Systems approaches for agricultural development. Kluwer, Dordrecht, pp 19–35

    Google Scholar 

  • Dua AB, de Vries Penning FWT, Seshu DV (1990) Simulation to support evaluation of the production potential of rice varieties in tropical climates. Trans Am Soc Agric Eng 33:1185–1194

    Article  Google Scholar 

  • Dwivedi SL, Crouch JH, Mackill DJ, Xu Y, Blair MW, Ragot M, Upadhyaya HD, Ortiz R (2007) The molecularization of public sector crop breeding: progress, problems and prospects. Adv Agron 95:163–318

    Article  CAS  Google Scholar 

  • Evans LT, Dunstone RL (1970) Some physiological aspects of evolution in wheat. Aust J Biol Sci 23:725–742

    Google Scholar 

  • Gu J, Yin X, Struik PC, Stomph TJ, Wang H (2012a) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well watered field conditions. J Exp Bot 63:455–469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gu J, Yin X, Stomph TJ, Wang H, Struik PC (2012b) Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J Exp Bot 63:5137–5153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gu J, Yin X, Stomph TJ, Struik PC (2014a) Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant Cell Environ 37:22–34

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Yin X, Zhang C, Wang H, Struik PC (2014b) Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved rice (Oryza sativa L.) yields under drought stress. Ann Bot 114:499–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink J-L (2011) Population genetics of genomics-based crop improvement methods. Trends Plant Sci 27:98–106

    CAS  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walch B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593

    Article  PubMed  CAS  Google Scholar 

  • Haverkort AJ, Kooman PL (1997) The use of systems analysis and modeling of growth and development in potato ideotyping under conditions affecting yields. Euphytica 94:191–200

    Article  Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Article  Google Scholar 

  • Heuvelink E, Marcelis LFM, Bakker MJ, van der Ploeg A (2007) Use of crop growth models to evaluate physiological traits in genotypes of horticultural crops. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer-Verlag, Dordrecht, pp 223–233

    Chapter  Google Scholar 

  • Huang N, Angeles E, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    Article  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci U S A 108:4488–4493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson P, Robertson M, Cooper M, Hammer G (1996) The role of physiological understanding in plant breeding, from a breeding perspective. Field Crops Res 49:11–37

    Article  Google Scholar 

  • Jahan E, Amthor JS, Farquhar GD, Trethowan R, Barbour MM (2014) Variation in mesophyll conductance among Australian wheat genotypes. Funct Plant Biol 41:568–580

    Article  Google Scholar 

  • Jahn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE (2011) Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiol 155:157–168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jena K, Mackill D (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266–1276

    Article  Google Scholar 

  • Kearsey M, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London

    Book  Google Scholar 

  • Khan MS (2012) Assessing genetic variation in growth and development of potato. Ph.D. thesis, Wageningen University, The Netherlands

    Google Scholar 

  • Khan MS, Yin X, van der Putten PEL, Struik PC (2014) An ecophysiological model analysis of yield differences within a set of contrasting cultivars and an F1 segregating population of potato (Solanum tuberosum L.) grown under diverse environments. Ecol Model 290:146–154

    Article  CAS  Google Scholar 

  • Kindu GA, Tang J, Yin X, Struik PC (2014) Quantitative trait locus analysis of nitrogen use efficiency in barley (Hordeum vulgare L.). Euphytica 199:207–221

    Article  CAS  Google Scholar 

  • Koornneef M, Stam P (2001) Changing paradigms in plant breeding. Plant Physiol 125:156–159

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kropff MJ, Haverkort AJ, Aggarwal PK, Kooman PL (1995) Using systems approaches to design and evaluate ideotypes for specific environments. In: Bouma J et al. (eds) Eco-regional approaches for sustainable land use and food production. Kluwer, Dordrecht, pp 417–435

    Chapter  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Plant Sci 29:33–40

    CAS  Google Scholar 

  • Laperche A, Devienne-Baret F, Maury O, Le Gouis J, Ney B (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113:1131–1146

    Article  PubMed  CAS  Google Scholar 

  • Lauteri M, Haworth M, Serraj R, Monteverdi MC, Centritto M (2014) Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PLoS One 9(10):e109054

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344

    Article  CAS  Google Scholar 

  • Loomis RS, Rabbinge R, Ng E (1979) Explanatory models in crop physiology. Annu Rev Plant Physiol 30:339–367

    Article  Google Scholar 

  • Mavromatis T, Boote KJ, Jones JW, Irmak A, Shinde D, Hoogenboom G (2001) Developing genetic coefficients for crop simulation models with data from crop performance trials. Crop Sci 41:40–51

    Article  Google Scholar 

  • McNally KL, Childs KL, Bohnert R et al (2009) Genome wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106:12273–12278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Messina CD, Jones JW, Boote KJ, Vallejos CE (2006) A gene-based model to simulate soybean development and yield responses to environment. Crop Sci 46:456–466

    Article  CAS  Google Scholar 

  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62:855–868

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Yamagishi J, Miyamoto N, Motoyamo M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786

    Article  PubMed  CAS  Google Scholar 

  • Ohsumi A, Takai T, Ida M, Yamamoto T, Arai-Sanoh Y, Yano M, Ando T, Kondo M (2011) Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Res 120:68–75

    Article  Google Scholar 

  • Parent B, Tardieu F (2014) Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature? J Exp Bot 65:6179–6189

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Penning de Vries FWT (1991) Improving yields: designing and testing VHYVs. In: FWT Penning de Vries et al. (eds) Systems simulations at IRRI. IRRI research paper 151, IRRI, Los Baños, pp 13–19

    Google Scholar 

  • Prioul JL, Quarrie S, Causse M, de Vienne D (1997) Dissecting complex physiological functions through the use of molecular quantitative genetics. J Exp Bot 48:1151–1163

    Article  CAS  Google Scholar 

  • Prudent M, Lecomte A, Bouchet J-P, Bertin N, Causse M, Génard M (2011) Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J Exp Bot 62:907–919

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quilot B, Génard M, Kervella J, Lescourret F (2004) Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach. Theor Appl Genet 109:440–449

    PubMed  CAS  Google Scholar 

  • Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES IV (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 98:11479–11484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reuning GA, Bauerle WL, Mullen JL, Mckay JK (2015). Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates. Plant Cell Environ 38:710–717

    Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791–2804

    Article  PubMed  CAS  Google Scholar 

  • Setter TL, Conocono EA, Egdane JA, Kropff MJ (1995) Possibility of increasing yield potential of rice by reducing panicle height in the canopy. I. Effects of panicles on light interception and canopy photosynthesis. Aust J Plant Physiol 22:441–451

    Google Scholar 

  • Shorter R, Lawn RJ, Hammer GL (1991) Improving genotypic adaptation in crops – a role for breeders, physiologists and modelers. Exp Agric 27:155–175

    Article  Google Scholar 

  • Spitters CJT, Schapendonk AHCM (1990) Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant and Soil 123:193–203

    Article  Google Scholar 

  • Stam P (1998) Crop physiology, QTL analysis and plant breeding. In: Lambers H et al. (eds) Inherent variation in plant growth: physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, pp 429–440

    Google Scholar 

  • Stratton DA (1998) Reaction norm functions and QTL-environment interactions for flowering time in Arabidopsis thaliana. Heredity 81:144–155

    Article  PubMed  Google Scholar 

  • Struik PC (2010) Can crop physiology help to combat late blight? Potato Res 53(4):277–287

    Article  Google Scholar 

  • Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14

    Article  PubMed  CAS  Google Scholar 

  • Taylaran RD, Adachi S, Ookawa T, Usuda H, Hirasawa T (2011) Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan. J Exp Bot 62:4067–4077

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teng S, Qian Q, Zeng D, Kunihiro Y, Fujimoto K, Huang D, Zhu L (2004) QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135:1–7

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–411

    Article  PubMed  CAS  Google Scholar 

  • Uptmoor R, Schrag T, Stützel H, Esch E (2008) Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea. Mol Breed 21:205–216

    Article  Google Scholar 

  • Uptmoor R, Li J, Schrag T, Stützel H (2012) Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model. Plant Biol 14:179–189

    PubMed  CAS  Google Scholar 

  • Vales MI, Schon CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Aust J Agric Res 56:883–894

    Article  Google Scholar 

  • Virk PS, Ford-lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304

    Article  Google Scholar 

  • Visker MHPW, Keizer LCP, van Eck HJ, Jacobsen E, Colon LT, Struik PC (2003) Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet 106:317–325

    PubMed  CAS  Google Scholar 

  • Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F (2011) A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant Physiol 157:718–729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • White JW (2006) From genome to wheat: emerging opportunities for modelling wheat growth and development. Eur J Agron 25:79–88

    Article  CAS  Google Scholar 

  • White JW, Hoogenboom G (1996) Simulating effects of genes for physiological traits in a process-oriented crop model. Agron J 88:416–422

    Article  Google Scholar 

  • White JW, Herndl M, Hunt LA, Payne TS, Hoogenboom G (2008) Simulation-based analysis of effects of Vrn and Ppd loci on flowering in wheat. Crop Sci 48:678–687

    Article  Google Scholar 

  • Xu L, Henke M, Zhu J, Kurth W, Buck-Sorlin GH (2011) A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes. Ann Bot 107:817–828

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yin X, Chasalow S, Dourleijn CJ, Stam P, Kropff MJ (2000a) Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield variation among recombinant inbred lines in barley. Heredity 85:539–549

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Chasalow S, Stam P, Kropff MJ, Dourleijn CJ, Bos I, Bindraban PS (2002) Use of component analysis in QTL mapping of complex crop traits: a case study on yield in barley. Plant Breed 121:314–319

    Article  Google Scholar 

  • Yin X, Kropff MJ, Aggarwal PK, Peng S, Horie T (1997) Optimal preflowering phenology of irrigated rice for high yield potential in three Asian environments: a simulation study. Field Crops Res 51:19–27

    Article  Google Scholar 

  • Yin X, Kropff MJ, Goudriaan J, Stam P (2000b) A model analysis of yield differences among recombinant inbred lines in barley. Agron J 92:114–120

    Article  Google Scholar 

  • Yin X, Kropff MJ, Stam P (1999a) The role of ecophysiological models in QTL analysis: the example of specific leaf area in barley. Heredity 82:415–421

    Article  PubMed  Google Scholar 

  • Yin X, Stam P, Dourleijn CJ, Kropff MJ (1999b) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99:244–253

    Article  CAS  Google Scholar 

  • Yin X, Struik PC (2010) Modelling the crop: from system dynamics to systems biology. J Exp Bot 61:2171–2183

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9:426–432

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, van Eeuwijk FA, Stam P, Tang J (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:967–976

    Article  PubMed  CAS  Google Scholar 

  • Zhao XQ, Xu JL, Zhao M, Lafitte R, Zhu L, Fu BY, Gao YM, Li ZK (2008) QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci 174:618–625

    Article  CAS  Google Scholar 

  • Zheng B, Biddulph B, Li D, Kuchel H, Chapman S (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environment. J Exp Bot 64:3747–3761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu XG, Zhang GL, Tholen D, Wang Y, Xin CP, Song QF (2011) The next generation models for crops and agro-ecosystems. Sci China Inf Sci 54:589–597

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyou Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yin, X., Struik, P.C., Gu, J., Wang, H. (2016). Modelling QTL-Trait-Crop Relationships: Past Experiences and Future Prospects. In: Yin, X., Struik, P. (eds) Crop Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-20562-5_9

Download citation

Publish with us

Policies and ethics