Skip to main content

Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics

  • Chapter
Crop Systems Biology

Abstract

Selection processes in plant breeding depend critically on the quality of phenotype predictions. The phenotype is classically predicted as a function of genotypic and environmental information. Models for phenotype prediction contain a mixture of statistical, genetic and physiological elements. In this chapter, we discuss prediction from linear mixed models (LMMs), with an emphasis on statistics, and prediction from crop growth models (CGMs), with an emphasis on physiology. Three modalities of prediction are distinguished: predictions for new genotypes under known environmental conditions, predictions for known genotypes under new environmental conditions, and predictions for new genotypes under new environmental conditions.

For LMMs, the genotypic input information includes molecular marker variation, while the environmental input can consist of meteorological, soil and management variables. However, integrated types of environmental characterizations obtained from CGMs can also serve as environmental covariable in LMMs. LMMs consist of a fixed part, corresponding to the mean for a particular genotype in a particular environment, and a random part defined by genotypic and environmental variances and correlations. For prediction via the fixed part, genotypic and/or environmental covariables are required as in classical regression. For predictions via the random part, correlations need to be estimated between observed and new genotypes, between observed and new environments, or both. These correlations can be based on similarities calculated from genotypic and environmental covariables. A simple type of covariable assigns genotypes to sub-populations and environments to regions. Such groupings can improve phenotype prediction.

For a second type of phenotype prediction, we consider CGMs. CGMs predict a target phenotype as a non-linear function of underlying intermediate phenotypes. The intermediate phenotypes are outcomes of functions defined on genotype dependent CGM parameters and classical environmental descriptors. While the intermediate phenotypes may still show some genotype by environment interaction, the genotype dependent CGM parameters should be consistent across environmental conditions. The CGM parameters are regressed on molecular marker information to allow phenotype prediction from molecular marker information and standard physiologically relevant environmental information.

Both LMMs and CGMs require extensive characterization of genotypes and environments. High-throughput technologies for genotyping and phenotyping provide new opportunities for upscaling phenotype prediction and increasing the response to selection in the breeding process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MM, Mace ES, van Oosterom EJ, Cruickshank A, Hunt CH, Hammer GL, Jordan DR (2014) QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering. TAG Theor App Genet (Theor angew Genet) 127(10):2253–2266. doi:10.1007/s00122-014-2377-9

    Article  CAS  Google Scholar 

  • Albrecht T, Auinger H-J, Wimmer V, Ogutu J, Knaak C, Ouzunova M, Piepho H-P, Schön C-C (2014) Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. TAG Theor App Genet (Theor angew Genet) 127:1375–1386. doi:10.1007/s00122-014-2305-z

    Article  Google Scholar 

  • Alimi NA, Bink MCAM, Dieleman JA, Magán JJ, Wubs AM, Palloix A, van Eeuwijk FA (2013) Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper. Theor Appl Genet 126(10):2597–2625. doi:10.1007/s00122-013-2160-3

    Article  PubMed  CAS  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412. doi:10.1080/07352680802467736

    Article  Google Scholar 

  • Atlin GN, Baker RJ, McRae KB, Lu X (2000) Selection response in subdivided target regions. Crop Sci 40(1):7–13. doi:10.2135/cropsci2000.4017

    Article  Google Scholar 

  • Atlin GN, Kleinknecht K, Singh GP, Piepho HP (2011) Managing genotype x environment interaction in plant breeding programs: a selection theory approach. J Indian Soc Agric Stat 65(2):237–247

    Google Scholar 

  • Baker RJ (1988) Tests for crossover genotype-environmental interactions. Can J Plant Sci 68(2):405–410. doi:10.4141/cjps88-051

    Article  Google Scholar 

  • Bänziger M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Cimmyt, Mexico

    Google Scholar 

  • Basford KE, Cooper M (1998) Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia. Aust J Agric Res 49(2):153–174. doi:10.1071/A97035

    Article  Google Scholar 

  • Bernardo R (2014) Genomewide selection when major genes are known. Crop Sci 54(1):68–75. doi:10.2135/cropsci2013.05.0315

    Article  Google Scholar 

  • Bertin N, Martre P, Génard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61(4):955–967. doi:10.1093/jxb/erp377

    Article  PubMed  CAS  Google Scholar 

  • Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177(3):1801–1813. doi:10.1534/genetics.107.071068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogard M, Ravel C, Paux E, Bordes J, Balfourier F, Chapman SC, Le Gouis J, Allard V (2014) Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J Exp Bot 65(20):5849–5865. doi:10.1093/jxb/eru328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradshaw AD, Caspari EW, Thoday JM (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Bull JK, Cooper M, DeLacy IH, Basford KE, Woodruff DR (1992) Utility of repeated checks for hierarchical classification of data from plant breeding trials. Field Crops Res 30((1–2)):79–95. doi:10.1016/0378-4290(92)90058-H

    Article  Google Scholar 

  • Burgueño J, Crossa J, Cornelius PL, Yang R-C (2008) Using factor analytic models for joining environments and genotypes without crossover genotype × environment interaction. Crop Sci 48(4):1291–1305. doi:10.2135/cropsci2007.11.0632

    Article  Google Scholar 

  • Burgueño J, De los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52(2):707–719. doi:10.2135/cropsci2011.06.0299

    Article  Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54(5):312–320. doi:10.1111/j.1744-7909.2012.01116.x

    Article  PubMed  Google Scholar 

  • Calus M, Veerkamp R (2011) Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol 43(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell BT, Baenziger PS, Eskridge KM, Budak H, Streck NA, Weiss A, Gill KS, Erayman M (2004) Using environmental covariates to explain genotype × environment and QTL × environment interactions for agronomic traits on chromosome 3A of wheat. Crop Sci 44(2):620–627. doi:10.2135/cropsci2004.6200

    Article  Google Scholar 

  • Chapman S (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161(1–2):195–208. doi:10.1007/s10681-007-9623-z

    Article  Google Scholar 

  • Chapman SC, Cooper M, Hammer GL, Butler DG (2000a) Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields. Aust J Agric Res 51(2):209–222. doi:10.1071/AR99021

    Article  Google Scholar 

  • Chapman SC, Hammer GL, Butler DG, Cooper M (2000b) Genotype by environment interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in the target population of environments. Aust J Agric Res 51(2):223–234. doi:10.1071/AR99022

    Article  Google Scholar 

  • Chapman SC, Cooper M, Hammer GL (2002a) Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments. Aust J Agric Res 53(4):379–389. doi:10.1071/AR01070

    Article  Google Scholar 

  • Chapman SC, Hammer GL, Podlich DW, Cooper M (2002b) Linking bio-physical and genetic models to integrate physiology, molecular biology and plant breeding. In: Kang M (ed) Quantitative genetics, genomics, and plant breeding. CAB International, Wallingford, pp 167–187

    Google Scholar 

  • Chapman S, Cooper M, Podlich D, Hammer G (2003) Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron J 95(1):99–113. doi:10.2134/agronj2003.9900

    Article  Google Scholar 

  • Chenu K, Chapman SC, Hammer GL, McLean G, Salah HBH, Tardieu F (2008) Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant Cell Environ 31(3):378–391. doi:10.1111/j.1365-3040.2007.01772.x

    Article  PubMed  Google Scholar 

  • Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a “gene-to-phenotype” modeling approach. Genetics 183(4):1507–1523. doi:10.1534/genetics.109.105429

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC (2011) Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62(6):1743–1755. doi:10.1093/jxb/erq459

    Article  PubMed  CAS  Google Scholar 

  • Chenu K, Deihimfard R, Chapman SC (2013) Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheatbelt – spatial and temporal trends. New Phytol 198(3):801–820. doi:10.1111/nph.12192

    Article  PubMed  Google Scholar 

  • Cobb JN, Declerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126(4):867–887. doi:10.1007/s00122-013-2066-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper M (1999) Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crops Res 64(1–2):13–34. doi:10.1016/S0378-4290(99)00048-9

    Article  Google Scholar 

  • Cooper M, Hammer GL (1996) Plant adaptation and crop improvement. CAB International, Wallingford

    Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65(4):311–336

    Article  CAS  Google Scholar 

  • Crossa J, Yang R-C, Cornelius P (2004) Studying crossover genotype × environment interaction using linear-bilinear models and mixed models. JABES 9(3):362–380. doi:10.1198/108571104x4423

    Article  Google Scholar 

  • Crossa J, Burgueño J, Cornelius PL, McLaren G, Trethowan R, Krishnamachari A (2006) Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci 46(4):1722–1733. doi:10.2135/cropsci2005.11-0427

    Article  Google Scholar 

  • Crossa J, de los Campos G, Perez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan JB, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713-U406. doi:10.1534/genetics.110.118521

    Google Scholar 

  • Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, Jannink J-L, Lopez Cruz MA, Babu R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 Genes Genomes Genet 3(11):1903–1926. doi:10.1534/g3.113.008227

    Google Scholar 

  • Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112(1):48–60. doi:10.1038/hdy.2013.16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11(4):381–393. doi:10.1198/108571106x154443

    Article  Google Scholar 

  • Daetwyler HD, Kemper KE, van der Werf JHJ, Hayes BJ (2012) Components of the accuracy of genomic prediction in a multi-breed sheep population. J Anim Sci 90(10):3375–3384. doi:10.2527/jas.2011-4557

    Article  PubMed  CAS  Google Scholar 

  • De la Vega AJ, Chapman SC (2010) Mega-environment differences affecting genetic progress for yield and relative value of component traits. Crop Sci 50(2):574–583. doi:10.2135/cropsci2009.04.0209

    Article  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, Oxford

    Google Scholar 

  • Dobzhansky T, Spassky B (1963) Genetics of natural populations. XXXIV. Adaptive norm, genetic load and genetic elite in drosophila pseudoobscura. Genetics 48(11):1467–1485

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eberius M, Lima-Guerra J (2009) High-throughput plant phenotyping – data acquisition, transformation, and analysis. In: Edwards D, Stajich J, Hansen D (eds) Bioinformatics. pp 259–278. doi:10.1007/978-0-387-92738-1_13

    Google Scholar 

  • Edmeades GO, McMaster GS, White JW, Campos H (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Funct Plant Biol 90(1):5–18. doi:10.1016/j.fcr.2004.07.002

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5), e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th edn. Harlow, GB: Longman

    Google Scholar 

  • Finlay K, Wilkinson G (1963) The analysis of adaptation in a plant-breeding programme. Aust J Agric Res 14(6):742–754. doi:10.1071/AR9630742

    Article  Google Scholar 

  • Gauch HG, Zobel RW (1997) Identifying mega-environments and targeting genotypes. Crop Sci 37(2):311–326. doi:10.2135/cropsci1997.0011183X003700020002x

    Article  Google Scholar 

  • Gu J, Yin X, Zhang C, Wang H, Struik PC (2014) Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress. Ann Bot 114(3):499–511. doi:10.1093/aob/mcu127

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Tucker DM, Wang D, Basten CJ, Ersoz E, Briggs WH, Lu J, Li M, Gay G (2013) Accuracy of across-environment genome-wide prediction in maize nested association mapping populations. G3 Genes Genomes Genet 3(2):263–272. doi:10.1534/g3.112.005066

    Google Scholar 

  • Guo Z, Tucker D, Basten C, Gandhi H, Ersoz E, Guo B, Xu Z, Wang D, Gay G (2014) The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 127(3):749–762. doi:10.1007/s00122-013-2255-x

    Article  PubMed  Google Scholar 

  • Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling – from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur J Agron 18(1–2):15–31. doi:10.1016/S1161-0301(02)00093-X

    Article  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11(12):587–593. doi:10.1016/j.tplants.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  • Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow RC (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J Exp Bot 61(8):2185–2202. doi:10.1093/jxb/erq095

    Article  PubMed  CAS  Google Scholar 

  • Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014) Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Chang Biol 20(3):867–878. doi:10.1111/gcb.12381

    Article  PubMed  Google Scholar 

  • Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F (2011) HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinf 12(1):148

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4(1):65–75. doi:10.3835/plantgenome2010.12.0029

    Article  Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52(1):146–160. doi:10.2135/cropsci2011.06.0297

    Article  Google Scholar 

  • Heslot N, Jannink J-L, Sorrells ME (2013) Using genomic prediction to characterize environments and optimize prediction accuracy in applied breeding data. Crop Sci 53(3):921–933. doi:10.2135/cropsci2012.07.0420

    Article  Google Scholar 

  • Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JPM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM – evolution towards a new generation of agricultural systems simulation. Environ Model Software. doi:10.1016/j.envsoft.2014.07.009

    Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9(2):166–177. doi:10.1093/bfgp/elq001

    Article  PubMed  CAS  Google Scholar 

  • Janss L, De los Campos G, Sheehan N, Sorensen D (2012) Inferences from genomic models in stratified populations. Genetics 192(2):693–704. doi:10.1534/genetics.112.141143

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarquín D, Crossa J, Lacaze X, Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M, Burgueño J, Campos G (2013) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 3:1–13. doi:10.1007/s00122-013-2243-1

    Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18(3–4):267–288. doi:10.1016/S1161-0301(02)00108-9

    Article  Google Scholar 

  • Kleinknecht K, Möhring J, Singh KP, Zaidi PH, Atlin GN, Piepho HP (2013) Comparison of the performance of best linear unbiased estimation and best linear unbiased prediction of genotype effects from zoned Indian maize data. Crop Sci 53(4):1384–1391. doi:10.2135/cropsci2013.02.0073

    Article  Google Scholar 

  • Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret F, Le Gouis J (2007) Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115(3):399–415. doi:10.1007/s00122-007-0575-4

    Article  PubMed  CAS  Google Scholar 

  • Lin CS, Binns MR (1988) A method of analyzing cultivar x location x year experiments: a new stability parameter. Theor Appl Genet 76(3):425–430. doi:10.1007/bf00265344

    Article  PubMed  CAS  Google Scholar 

  • Makumburage GB, Richbourg HL, LaTorre KD, Capps A, Chen C, Stapleton AE (2013) Genotype to phenotype maps: multiple input abiotic signals combine to produce growth effects via attenuating signaling interactions in maize. G3 Genes Genomes Genet 3(12):2195–2204. doi:10.1534/g3.113.008573

    Google Scholar 

  • Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA (2004) Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137(1):139–145. doi:10.1023/B:EUPH.0000040511.46388.ef

    Article  CAS  Google Scholar 

  • Malosetti M, Ribaut J-M, van Eeuwijk FA (2013) The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front Physiol 4:1–17. doi:10.3389/fphys.2013.00044

    Article  CAS  Google Scholar 

  • Mathews K, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117(7):1077–1091. doi:10.1007/s00122-008-0846-8

    Article  PubMed  Google Scholar 

  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield–trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62(3):855–868. doi:10.1093/jxb/erq329

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muir W, Nyquist WE, Xu S (1992) Alternative partitioning of the genotype-by-environment interaction. Theor Appl Genet 84(1–2):193–200. doi:10.1007/bf00224000

    PubMed  CAS  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39(11):851–859. doi:10.1071/FP12079

    Article  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2(12), e190. doi:10.1371/journal.pgen.0020190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piepho HP (1998) Methods for comparing the yield stability of cropping systems. J Agron Crop Sci 180(4):193–213. doi:10.1111/j.1439-037X.1998.tb00526.x

    Article  Google Scholar 

  • Piepho H-P (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156(4):2043–2050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49(4):1165–1176

    Article  Google Scholar 

  • Piepho HP, Möhring J (2005) Best linear unbiased prediction of cultivar effects for subdivided target regions. Crop Sci 45(3):1151–1159. doi:10.2135/cropsci2004.0398

    Article  Google Scholar 

  • Piepho H, Möhring J, Melchinger A, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161(1):209–228. doi:10.1007/s10681-007-9449-8

    Article  Google Scholar 

  • Podlich DW, Cooper M, Basford KE, Geiger HH (1999) Computer simulation of a selection strategy to accommodate genotype environment interactions in a wheat recurrent selection programme. Plant Breed 118(1):17–28. doi:10.1046/j.1439-0523.1999.118001017.x

    Article  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5(3):92–102. doi:10.3835/plantgenome2012.05.0005

    Article  CAS  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012a) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5(3):103–113. doi:10.3835/plantgenome2012.06.0006

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012b) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2), e32253. doi:10.1371/journal.pone.0032253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prasanna B, Araus J, Crossa J, Cairns J, Palacios N, Das B, Magorokosho C (2013) High-throughput and precision phenotyping for cereal breeding programs. In: Gupta PK, Varshney RK (eds) Cereal genomics II. pp 341–374. doi:10.1007/978-94-007-6401-9_13

    Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131(2):664–675. doi:10.1104/pp. 013839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype×environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55(407):2461–2472. doi:10.1093/jxb/erh200

    Article  PubMed  CAS  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009a) Raising yield potential in wheat. J Exp Bot 60(7):1899–1918. doi:10.1093/jxb/erp016

    Article  PubMed  CAS  Google Scholar 

  • Reynolds M, Manes Y, Izanloo A, Langridge P (2009b) Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann App Biol 155(3):309–320. doi:10.1111/j.1744-7348.2009.00351.x

    Article  Google Scholar 

  • Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink J-L, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194(2):493–503. doi:10.1534/genetics.113.150227

    Article  PubMed  PubMed Central  Google Scholar 

  • Romagosa I, Fox P (1993) Genotype × environment interaction and adaptation. In: Hayward MD, Bosemark NO, Romagosa I, Cerezo M (eds) Plant breeding: principles and prospects. Springer, Dordrecht, pp 373–390

    Google Scholar 

  • Romagosa I, Borràs-Gelonch G, Slafer G, Eeuwijk F (2013) Genotype by environment interaction and adaptation. In: Savin R, Costa-Pierce B, Misztal I, Whitelaw CB, Christou P (eds) Sustainable food production. Springer, New York, pp 846–870. doi:10.1007/978-1-4614-5797-8_199

    Chapter  Google Scholar 

  • Sadras VO, Lawson C (2011) Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop Pasture Sci 62(7):533–549. doi:10.1071/CP11060

    Article  Google Scholar 

  • Sadras VO, Rebetzke GJ, Edmeades GO (2013) The phenotype and the components of phenotypic variance of crop traits. Field Crop Res 154:255–259. doi:10.1016/j.fcr.2013.10.001

    Article  Google Scholar 

  • Sarkar S (1999) From the reaktionsnorm to the adaptive norm: the norm of reaction, 1909–1960. Biol Philos 14(2):235–252. doi:10.1023/a:1006690502648

    Article  Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Karaman Z, Knaak C, Piepho HP (2012) Genomic selection using multiple populations. Crop Sci 52(6):2453–2461. doi:10.2135/cropsci2012.03.0160

    Article  Google Scholar 

  • Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist's perspective. Ann Appl Biol 142(2):117–128. doi:10.1111/j.1744-7348.2003.tb00237.x

    Article  Google Scholar 

  • Slafer G, Kernich G (1996) Have changes in yield (1900–1992) been accompanied by a decreased yield stability in Australian cereal production? Aust J Agric Res 47(3):323–334. doi:10.1071/AR9960323

    Article  Google Scholar 

  • Slafer G, Rawson H (1994) Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Funct Plant Biol 21(4):393–426. doi:10.1071/PP9940393

    Google Scholar 

  • Smith A, Cullis B, Thompson R (2001a) Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57(4):1138–1147. doi:10.1111/j.0006-341X.2001.01138.x

    Article  PubMed  CAS  Google Scholar 

  • Smith AB, Cullis BR, Appels R, Campbell AW, Cornish GB, Martin D, Allen HM (2001b) The statistical analysis of quality traits in plant improvement programs with application to the mapping of milling yield in wheat. Aust J Agric Res 52(12):1207–1219. doi:10.1071/AR01058

    Article  CAS  Google Scholar 

  • Smith AB, Cullis BR, Thomson R (2005) The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agric Sci 143(06):449–462. doi:10.1017/S0021859605005587

    Article  Google Scholar 

  • Smith AB, Lim P, Cullis BR (2006) The design and analysis of multi-phase plant breeding experiments. J Agric Sci 144(05):393–409. doi:10.1017/S0021859606006319

    Article  Google Scholar 

  • Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119(1–2):185–190. doi:10.1023/a:1017594422176

    Article  CAS  Google Scholar 

  • Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126(11):2699–2716. doi:10.1007/s00122-013-2166-x

    Article  PubMed  CAS  Google Scholar 

  • Stephens M (2013) A unified framework for association analysis with multiple related phenotypes. PLoS One 8(7), e65245. doi:10.1371/journal.pone.0065245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8(1):9–14. doi:10.1016/S1360-1385(02)00008-0

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Reymond M, Muller B, Granier C, Simonneau T, Sadok W, Welcker C (2005) Linking physiological and genetic analyses of the control of leaf growth under changing environmental conditions. Aust J Agric Res 56(9):937–946. doi:10.1071/AR05156

    Article  Google Scholar 

  • Uitdewilligen JGAML, Wolters A-MA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8(5), e62355. doi:10.1371/journal.pone.0062355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154(4):1839–1849

    PubMed  PubMed Central  Google Scholar 

  • van der Heijden G, Song Y, Horgan G, Polder G, Dieleman A, Bink M, Palloix A, van Eeuwijk F, Glasbey C (2012) SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Funct Plant Biol 39(11):870–877. doi:10.1071/FP12019

    Article  Google Scholar 

  • van Eeuwijk F, Denis J, Kang M (1996) Incorporating additional information on genotypes and environments in models for two-way genotype by environment tables. In: Kang MS, Gauch HG Jr (eds) Genotype-by-environment interaction. Taylor & Francis Group, Boca Raton, Florida, pp 15–50

    Google Scholar 

  • van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Aust J Agric Res 56(9):883–894. doi:10.1071/AR05153

    Article  Google Scholar 

  • van Eeuwijk FA, Bink MCAM, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol 13(2):193–205. doi:10.1016/j.pbi.2010.01.001

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6), e1001883. doi:10.1371/journal.pbio.1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbyla AP, Cullis BR (2012) Multivariate whole genome average interval mapping: QTL analysis for multiple traits and/or environments. Theor Appl Genet 125(5):933–953

    Article  PubMed  Google Scholar 

  • Wang E, Robertson MJ, Hammer GL, Carberry PS, Holzworth D, Meinke H, Chapman SC, Hargreaves JNG, Huth NI, McLean G (2002) Development of a generic crop model template in the cropping system model APSIM. Eur J Agron 18(1–2):121–140. doi:10.1016/S1161-0301(02)00100-4

    Article  Google Scholar 

  • West BT, Welch KB, Galecki AT (2006) Linear mixed models: a practical guide using statistical software. Boca Raton, Florida

    Google Scholar 

  • Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink J-L, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger AE (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 Genes Genomes Genet 2(11):1427–1436. doi:10.1534/g3.112.003699

    Google Scholar 

  • Woltereck R (1909) Weitere experimentelle Untersuchungen über Artveränderung, speziel über das Wesen quantitativer Artunterschiede bei Daphnien. Verhandlungen der deutschen zoologischen Gesellschaft 19:110–173

    Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16(2):97

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the 6th international congress of genetics, Brooklin, NY, pp 356–366

    Google Scholar 

  • Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40(3):597–605. doi:10.2135/cropsci2000.403597x

    Article  Google Scholar 

  • Yin X, Chasalow SD, Dourleijn CJ, Stam P, Kropff MJ (2000) Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield variation among recombinant inbred lines in barley. Heredity 85(6):539–549. doi:10.1046/j.1365-2540.2000.00790.x

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Stam P, Kropff MJ, Schapendonk AHCM (2003) Crop modeling QTL mapping, and their complementary role in plant breeding. Agron J 95(1):90–98. doi:10.2134/agronj2003.9000

    Article  CAS  Google Scholar 

  • Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9(9):426–432. doi:10.1016/j.tplants.2004.07.007

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Gowda M, Longin F, Würschum T, Ranc N, Reif J (2012) Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet 125(4):707–713. doi:10.1007/s00122-012-1862-2

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Chenu K, Fernanda Dreccer M, Chapman SC (2012) Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob Chang Biol 18(9):2899–2914. doi:10.1111/j.1365-2486.2012.02724.x

    Article  PubMed  Google Scholar 

  • Zheng B, Biddulph B, Li D, Kuchel H, Chapman S (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J Exp Bot 64(12):3747–3761. doi:10.1093/jxb/ert209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Daniela Bustos-Korts thanks Becas Chile (CONICYT) for the financial support in form of a PhD scholarship. Marcos Malosetti and Fred van Eeuwijk worked on this chapter as part of a project financed by the Generation Challenge Program – Integrated Breeding Platform (https://www.integratedbreeding.net/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred van Eeuwijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bustos-Korts, D., Malosetti, M., Chapman, S., van Eeuwijk, F. (2016). Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics. In: Yin, X., Struik, P. (eds) Crop Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-20562-5_3

Download citation

Publish with us

Policies and ethics