Skip to main content

Biological Toxins from Marine and Freshwater Microalgae

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

Abstract

In the last decades the increased occurrence of intoxications caused by biological toxins produced from marine and freshwater microalgae has underlined their relevance as emerging risks for food safety. Biological toxins from algae (i.e. saxitoxin, brevetoxin, okadaic acid, domoic acid) are recognised as a major threat for human and animal health, especially where Harmful Algal Blooms phenomena develop. Many of these toxins are responsible for severe illness or death, mostly related to consumption of seafood contaminated by toxic algae. The present book summarises current knowledge and perspectives for future research on marine and freshwater algal toxins. Specific topics are: overview of the different species producing toxins, their survival strategies in the environment; typologies of toxins, their chemical structure and mechanisms of actions; methods currently in use for their monitoring; emerging issues and future outlooks for their control. The importance of biotoxin monitoring in the framework of the European Marine Strategy Framework Directive is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASP:

Amnesic Shellfish Poisoning

AOAC:

Association of Official Analytical Chemists

AZA:

Azaspiracid

AZP:

Azaspiracid Shellfish Poisoning

BMAA:

β-Methylamino-L-Alanine

PbTx:

Brevetoxin

CYN:

Cylindrospermopsin

BIOTOX:

Development of Cost-Effective Tools for Risk Management and Traceability Systems for Marine Biotoxins in Seafood

DSP:

Diarrhetic Shellfish Poisoning

DST:

Diarrhetic Shellfish Toxin

DiCANN:

Dinoflagellate Categorisation by Artificial Neural Network

DTX:

Dinophysistoxin

DA:

Domoic Acid

ELISA:

Enzyme-Linked ImmunoSorbent Assay

EFSA:

European Food Safety Authority

EU:

European Union

GEOHAB:

Global Ecology and Oceanography of Harmful Algal Blooms

GES:

Good Environmental Status

HAB:

Harmful Algal Bloom

HPLC:

High-Performance Liquid Chromatography

LD50 :

Median Lethal Dose (50 % of the population)

LOQ:

Limit of Quantification

LC:

Liquid Chromatography

LC-MS:

Liquid Chromatography-Mass Spectrometry

LC-MS/MS:

Liquid Chromatography Tandem Mass Spectrometry

MSFD:

Marine Strategy Framework Directive

MALDI-TOF:

Matrix-assisted Laser Desorption/Ionisation Time-of-Flight

MCY:

Microcystin

MCY-RR:

Microcystin-RR

MW:

Molecular Weight

NSP:

Neurotoxic Shellfish Poisoning

N:

Nitrogen

OA:

Okadaic Acid

PLTX:

Palitoxin

PSP:

Paralytic Shellfish Poisoning

PTX:

Pectenotoxin

P:

Phosphorus

PCR:

Polymerase Chain Reaction

PSU:

Practical Salinity Unit

Q-TOF:

Quadrupole-Time-of-Flight

STX:

Saxitoxin

SPX:

Spirolides

USA:

United States of America

YTX:

Yessotoxin

References

  • Accoroni S, Romagnoli T, Colombo F, Pennesi C, Di Camillo CG, Marini M, Battocchi C, Ciminiello P, Dell’Aversano C, Dello Iacovo E, Fattorusso E, Tartaglione L, Penna A, Totti C (2011) Ostreopsis cf. ovata bloom in the northern Adriatic Sea during summer 2009: ecology, molecular characterization and toxin profile. Mar Poll Bull 62(11):2512–2519. doi:10.1016/j.marpolbul.2011.08.003

    CAS  Google Scholar 

  • Accoroni S, Colombo F, Pichierri S, Romagnoli T, Marini M, Battocchi C, Penna A, Totti C (2012) Ecology of Ostreopsis cf. ovata blooms in the northwestern Adriatic Sea. Cryptogam Algolog 33(2):191–198. doi:10.7872/crya.v33.iss2.2011.191

    Google Scholar 

  • Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier, New York, pp 11–16

    Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726. doi:10.1007/BF02804901

    Google Scholar 

  • Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M (2012a) The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10–35. doi:10.1016/j.hal.2011.10.012

    Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012b) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci 4:143–176. doi:10.1146/annurev-marine-120308-081121

    Google Scholar 

  • AOAC (1990) Paralytic Shellfish poison. Biological method. Final action. In: Hellrich K (ed) Official method of analysis, 15th edn, pp 881–882, Sect 959.08. Association of Official Analytical Chemists (AOAC), Arlington, VA

    Google Scholar 

  • Asakawa M, Beppu R, Ito K, Tsubota M, Takayama H, Miyazawa K (2006) Accumulation of paralytic Shellfish poison (PSP) and biotransformation of its components in Oysters Crassostrea gigas fed with the toxic dinoflagellate Alexandrium tamarense. J Food Hyg Soc Japan 47(1):28–32

    CAS  Google Scholar 

  • Aubert M, Aubert J (1986) Eutrophie et distrophie en milieu marin—phenomenes plantoniques et bacteriens. Centre d’etudes et recherches de biologie et d’oceanographie medicale Cerbom (Nice). Rev Int Oceanogr Med 83–84:3–302

    Google Scholar 

  • Azmil Z, Fresnel J, Le Gal D, Billard C (2001) Domoic acid accumulation in French shellfish in relation to toxic species of Pseudo-nitzschia multiseries and P. pseudodelicatissima. Toxicon 39(8):1245–1251. doi:10.1016/S0041-0101(01)00096-4

    Google Scholar 

  • Backer LC, Fleming LE, Rowan AD, Baden DG (2003) Epidemiology, public health and human illnesses associated with harmful marine algae. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 723–750

    Google Scholar 

  • Baden DG (1983) Marine food-borne dinoflagellate toxins. Int Rev Cytol 82:99–150. doi:10.1016/S0074-7696(08)60824-4

    CAS  Google Scholar 

  • Baden DG (1989) Brevetoxins: unique polyether dinoflagellate toxins. Fed Am Soc Exp Biol J 3:1807–1817

    CAS  Google Scholar 

  • Baden DG, Mende TJ, Bikhazi G, Leung I (1982) Bronchoconstriction caused by Florida red tide toxins. Toxicon 20(5):929–932. doi:10.1016/0041-0101(82)90081-2

    CAS  Google Scholar 

  • Bagnis R (1968) Clinical aspects of ciguatera (fish poisoning) in French Polynesia. Hawaii Med J 28(1):25–28

    CAS  Google Scholar 

  • Blanco J, Reyero M, José F (2003) Kinetics of accumulation and transformation of paralytic shellfish toxins in the blue mussel Mytilus galloprovincialis. Toxicon 42(7):777–784. doi:10.1016/j.toxicon.2003.10.007

    CAS  Google Scholar 

  • Bogialli S, Bruno M, Curini R, Di Corcia A, Laganá A, Mari B (2005) Simple assay for analyzing five microcystins and nodularin in fish muscle tissue: Hot water extraction followed by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 53(17):6586–6592. doi:10.1021/jf050257m

    CAS  Google Scholar 

  • Bogialli S, Bruno M, Curini R, Di Corcia A, Fanali C, Laganà A (2006a) Monitoring algal toxins in lake water by liquid chromatography tandem mass spectrometry. Environ Sci Technol 40(9):2917–2923. doi:10.1021/es052546x

    CAS  Google Scholar 

  • Bogialli S, Bruno M, Curini R, Di Corcia A, Laganà A (2006b) Simple and rapid determination of anatoxin-a in lake water and fish muscle tissue by liquid-chromatography-tandem mass spectrometry. J Chromatogr A 1122(1–2):180–185. doi:10.1016/j.chroma.2006.04.064

    CAS  Google Scholar 

  • Bold HC, Wynne MG (1985) Introduction to the algae, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Botana LM (ed) (2008) Seafood and freshwater toxins—pharmacology, physiology, and detection, 2nd edn. CRC Press, Boca Raton, pp 1–941

    Google Scholar 

  • Botana LM (ed) (2014) Seafood and freshwater toxins: pharmacology, physiology and detection, 3rd edn. CRC Press, Boca Raton, pp 1–1215

    Google Scholar 

  • Botana LM, Fernández-Araujo A, Alfonso A, Antelo JM, Davila T, Alfonso C, Katikou P (2013) Warm seawater microalgae: growth and toxic profile of Ostreopsis Spp from European costs. Oceanography 1:1–6

    Google Scholar 

  • Brand LE (2009) Human exposure to cyanobacteria and BMAA. Amyotroph Lateral Scler Suppl 2:124–126. doi:10.3109/17482960903273585

    Google Scholar 

  • Bruno M (2000) Toxic algae in sea and freshwater: health impact and control strategies. ISTISAN Reports 00/31, pp 1–94. Istituto Superiore di Sanità, Rome

    Google Scholar 

  • Bruno M (2013) Cyanotoxin health hazard and risk assessment freshwater lakes. Cyanobacteria: ecology, toxicology and management. Nova Science Publishers, Hauppauge, pp 153–177

    Google Scholar 

  • Bruno M, Congestri R, Buzzelli E (1997) Indicazioni per il controllo delle specie algali tossiche delle acque marine e lacustri italiane. ISTISAN Reports 97/21, pp 1–128. Istituto Superiore di Sanità, Rome

    Google Scholar 

  • Bruno M, Melchiorre S, Messineo V, Volpi F, Di Corcia A, Aragona I, Guglielmone G, Di Paolo C, Cenni M, Ferranti P, Gallo P (2009) Microcystin detection in contaminated fish from Italian lakes using ELISA immunoassays and LC-MS/MS analysis. Handbook on Cyanobacteria: biochemistry, biotechnology and applications. Nova Science Publishers, Hauppauge, pp 191–210

    Google Scholar 

  • Cabado AG, Vieites JM (eds) (2012) New trends in marine and freshwater toxins: food and safety concerns. Nova Science Publishers, Hauppauge, pp 1–403

    Google Scholar 

  • Cabrini M, Falconi C, Culverhouse PF (2010) Metodi automatici per il rilevamento di microalghe planctoniche. In: Socal G, Buttino I, Cabrini M, Mangoni O, Penna A, Totti C (eds) Metodologie di studio del plancton marino. Manuali e Linee Guida ISPRA, 56/2010, Chapter 25. Istituto Superiore per la protezione e la ricerca ambientale, Rome. http://www.isprambiente.gov.it/contentfiles/00009100/9171-mlg56-2010.pdf/at_download/file. Accessed 07 March 2015

  • Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: “The CyanoHAB”. Hum Ecol Risk Assess 7(5):1393–1407. doi:10.1080/20018091095087

    Google Scholar 

  • Carmichael WW (2008) A world overview—one-hundred-twenty-seven years of research on toxic cyanobacteria—where do we go from here? In: Hudnell KH (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Adv Exp Med Biol 619:105–125 (Springer, New York). doi:10.1007/978-0-387-75865-7_4

  • Caroppo C, Congestri R, Bruno M (2001) Dynamics of Dinophysis sensu lato species (Dinophyceae) in a coastal mediterranean environment (Adriatic Sea). Cont Shelf Res 21(16–17):1839–1854. doi:10.1016/S0278-4343(01)00028-0

    Google Scholar 

  • Caroppo C, Congestri R, Bracchini L, Albertano P (2005) On the presence of Pseudo-nitzschia calliantha Lundholm, Moestrup et Hasle and Pseudo-nitzschia delicatissima (Cleve) Heiden in the Southern Adriatic Sea (Mediterranean Sea, Italy). J Plankton Res 27(8):763–774. doi:10.1093/plankt/fbi050

    Google Scholar 

  • Carrada GC, Casotti R, Modigh M, Saggiomo V (1991) Presence of Gymnodinium catenatum (Dinophyceae) in a coastal mediterranean lagoon. J Plankton Res 13(1):229–238. doi:10.1093/plankt/13.1.229

    Google Scholar 

  • Cembella AD (2003) Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447

    Google Scholar 

  • Cerino F, Orsini L, Sarno D, Dell’Aversano C, Tartaglione L, Zingone A (2005) The alternation of different morphotypes in the seasonal cycle of the toxic diatom Pseudo-nitzschia galaxiae. Harmful Algae 4(1):33–48. doi:10.1016/j.hal.2003.10.005

    CAS  Google Scholar 

  • Chen C, Chou H (2002) Fate of paralytic shellfish poisoning toxins in purple clam, in outdoor culture and laboratory culture. Mar Poll Bull 44(8):733–738. doi:10.1016/S0025-326X(01)00307-1

    CAS  Google Scholar 

  • Choi MC, Hsieh DPH, Lam PKS, Wang WX (2003) Field depuration and biotransformation of paralytic shellfish toxins in scallop Chlamys nobilis and green-lipped mussel Perna viridis. Mar Biol 143(5):927–934. doi:10.1007/s00227-003-1148-y

    CAS  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, London, pp 41–90

    Google Scholar 

  • Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M (2009) Recent developments in mediterranean harmful algal events. In: Fishbein JC (ed) Advances in molecular toxicology, vol 3. Elsevier B.V, Amsterdam

    Google Scholar 

  • Codd GA (2000) Cyanobacterial toxins, the perception of water quality and the prioritisation of eutrophication control. Ecol Eng 16(1):51–60. doi:10.1016/S0925-8574(00)00089-6

    Google Scholar 

  • Codd GA, Bell SG, Kaya K, Ward CJ, Beattie KA, Metcalf JS (1999) Cyanobacterial toxins, exposures routes and human health. Eur J Phycol 34(4):405–415

    Google Scholar 

  • Commission European (2008) European Commission Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community actions in the field of marine environmental policy (Marine Strategy Framework Directive). Off J Eur Comm L164:19–40

    Google Scholar 

  • Commission European (2010) European Commission Decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters (notified under document C (2010) 5956)(2010/477/EU). Off J Eur Union L232:14–24

    Google Scholar 

  • Costa PR, Rosa R, Sampayo MAM (2004) Tissue distribution of the amnesic shellfish toxin, domoic acid, in Octopus vulgaris from the Portuguese coast. Mar Biol 144(5):971–976. doi:10.1007/s00227-003-1258-6

    CAS  Google Scholar 

  • Costa PR, Rosa R, Duarte-Silva A, Brotas V, Sampayo MAM (2005) Accumulation, transformation and tissue distribution of domoic acid, the amnesic shellfish poisoning toxin, in the common cuttlefish, Sepia officinalis. Aquat Toxicol 74(1):82–91. doi:10.1016/j.aquatox.2005.01.011

    CAS  Google Scholar 

  • Costa PR, Botelho MJ, Rodrigues SM (2009) Accumulation of paralytic shellfish toxins in digestive gland of Octopus vulgaris during bloom events including the dinoflagellate Gymnodinium catenatum. Mar Poll Bull 58(11):1747–1750. doi:10.1016/j.marpolbul.2009.08.005

    Google Scholar 

  • Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci USA 100:13380–13383. doi:10.1073/pnas.2235808100

  • Cox PA, Banack SA, Susan J, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102:5074–5078

    CAS  Google Scholar 

  • Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10 Suppl 2:109–117. doi:10.3109/17482960903286066

    Google Scholar 

  • Culverhouse PF, Herry V, Reguera B, Gonzalez-Gil S, Williams R, Fonda S, Cabrini M, Parisini T, Ellis R (2001) Dinoflagellate categorisation by artificial neural network (DiCaNN). In: Hallegraeff GM, Blackburn SI, Bolck CJ, Lewis RJ (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Vigo, pp 195–198

    Google Scholar 

  • Dodge JD (1982) Marine dinoflagellates of the British Isles. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Donner G, Platt-Rohloff L, Brummer F, Elbrächter M (2000) (Abstract) A calcium-dependent allelopathic effect of the dinoflagellate Coolia monotis on the chlorophyceae Dunaliella salina. In: Proceedings of the 9th international conference on harmful algal blooms Tasmania 2000, 7–11 Feb 2000, Wrest Point Convention Centre, Hobart, Tasmania, Australia, p 224. http://frdc.com.au/research/Final_Reports/1998-343-DLD.pdf. Accessed 27 Feb 2015

  • Doucette GJ, Kodama M, Franca S, Gallacher S (1998) Bacterial interactions with harmful algal bloom species: bloom ecology, toxigenesis, and cytology. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Heidelberg, pp 619–647

    Google Scholar 

  • Doucette G, Maneiro I, Riveiro I, Svensen C (2006) Phycotoxin pathways in aquatic food webs: transfer, accumulation and degradation. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Ecological studies, vol 189, Springer, Berlin, pp 283–296. doi:10.1007/978-3-540-32210-8_22

  • Durando P, Ansaldi F, Oreste P, Moscatelli P, Marensi L, Grillo C, Gasparini R, Icardi G, Collaborative Group for the Ligurian Syndromic Algal Surveillance (2007) Ostreopsis ovata and human health: epidemiological and clinical features of respiratory syndrome outbreaks from a two-year syndromic surveillance, 2005–06, in north-west Italy. Euro Surveillance 12, 23:pii = 3212. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=3212. Accessed 06 March 2015

  • EFSA (2008a) Marine biotoxins in shellfish—okadaic acid and analogues. Scientific opinion of the panel on contaminants in the food chain. EFSA J 589:1–62. doi:10.2903/j.efsa.2008.589

    Google Scholar 

  • EFSA (2008b) Marine biotoxins in shellfish—Azaspiracid group [1]. Scientific opinion of the panel on contaminants in the food chain. EFSA J 723:1–52. doi:10.2903/j.efsa.2008.723

    Google Scholar 

  • EFSA (2008c) Marine biotoxins in shellfish—Yessotoxin group. Scientific opinion of the panel on contaminants in the food chain. EFSA J 907:1–62. doi:10.2903/j.efsa.2009.907

    Google Scholar 

  • EFSA (2009a) Marine biotoxins in shellfish—Saxitoxin group. Scientific opinion of the panel on contaminants in the food chain. EFSA J 1019:1–76. doi:10.2903/j.efsa.2009.1019

    Google Scholar 

  • EFSA (2009b) Marine biotoxins in shellfish—Pectenotoxin group. Scientific opinion of the panel on contaminants in the food chain. EFSA J 1109:1–47. doi:10.2903/j.efsa.2009.1109

    Google Scholar 

  • EFSA (2009c) Marine biotoxins in shellfish—Domoic acid. Scientific opinion of the panel on contaminants in the food chain. EFSA J 1181:1–61. http://www.efsa.europa.eu/fr/scdocs/doc/1181.pdf. Accessed 06 March 2015

  • EFSA (2009d) Marine biotoxins in shellfish—Palytoxin group 1. Panel on contaminants in the food chain (CONTAM). EFSA J 7, 12:1393–1433. doi:10.2903/j.efsa.2009.1393

  • EFSA (2010a) Marine biotoxins in shellfish—Emerging toxins: Ciguatoxin group. Panel on contaminants in the food chain (CONTAM). EFSA J 8, 6:1627–1665. doi:10.2903/j.efsa.2010.1627

  • EFSA (2010b) Scientific Opinion on marine biotoxins in shellfish—Cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins). EFSA J 8(6):1628–1667. doi:10.2903/j.efsa.2010.1628

    Google Scholar 

  • EFSA (2010c) Marine biotoxins in shellfish—Emerging toxins: Brevetoxin group. Panel on contaminants in the food chain (CONTAM). EFSA J 8, 7:1677–1706. doi:10.2903/j.efsa.2010.1677

  • Eilertsen HC, Wyatt T (2000) Phytoplankton models and life history strategies. South Afr J Mar Sci 22(1):323–338. doi:10.2989/025776100784125717

    Google Scholar 

  • Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P (eds) (2008) Algal toxins: nature, occurrence, effect and detection. NATO science for peace and security series A: chemistry and biology. Springer Science+Business Media B.V., Dordrecht, pp 1–399

    Google Scholar 

  • FAO/IOC/WHO (2005) Report of the Joint FAO/IOC/WHO ad hoc Expert Consultation on Biotoxins in Bivalve Molluscs. Oslo, Norway, 26–30 Sept 2004. ftp://fao.org/es/esn/food/biotoxin_report_en.pdf. Accessed 06 March 2015

  • Faust MA (1999) Three Ostreopsis specie (Dinophyceae): O. marinus sp.nov., O. beliseanus sp. nov., and O. carribeanus sp. nov. Phycologia 38(2):92–99. doi:10.2216/i0031-8884-38-2-92.1

    Google Scholar 

  • Faust MA, Morton SL, Quod JP (1996) Further SEM study of marine dinoflagellate: the genus Ostreopsis (Dinophyceae). J Phycol 32(6):1053–1065. doi:10.1111/j.0022-3646.1996.01053.x

    Google Scholar 

  • Ferranti P, Fabbrocino S, Nasi A, Caira S, Bruno M, Serpe L, Gallo P (2009) Liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry for microcystin analysis in freshwaters: Method performances and characterisation of a novel variant of microcystin-RR. Rapid Commun Mass Spectrom 23(9):1328–1336. doi:10.1002/rcm.4006

    CAS  Google Scholar 

  • Ferranti P, Fabbrocino S, Chiaravalle E, Bruno M, Basile A, Serpe L, Gallo P (2013) Profiling microcystin contamination in a water reservoir by MALDI-TOF and liquid chromatography coupled to Q/TOF tandem mass spectrometry. Food Res Int 54(1):1321–1330. doi:10.1016/j.foodres.2012.12.028

    CAS  Google Scholar 

  • Fiedler CP (1982) Zooplankton avoidance and reduced grazing responses to Gymnodinium splendens (Dinophyceae). Limnol Oceanogr 27(5):961–965. doi:10.4319/lo.1982.27.5.0961

    Google Scholar 

  • Fristachi A, Sinclair JL, Hall S, Hambrook Berkman JA, Boyer G, Burkholder J, Burns J, Carmichael W, DuFour A, Frazier W, Morton SL, O’Brien E, Walker S (2008) Occurrence of cyanobacterial harmful algal blooms workgroup report. In: Hudnell KH (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 45–103

    Google Scholar 

  • Gallo P, Fabbrocino S, Cerulo MG, Ferranti P, Bruno M, Serpe L (2009) Determination of cylindrospermopsin in freshwaters and fish tissue by liquid chromatography coupled to electrospray ion trap mass spectrometry. Rapid Commun Mass Spectrom 23(20):3279–3284. doi:10.1002/rcm.4243

    CAS  Google Scholar 

  • Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) (2001). LIFEHAB Life histories of microalgal species causing harmful blooms. European Commission Directorate General, Science, Research and Development. http://www.icm.csic.es/bio/projects/lifehab/LIFEHAB.pdf. Accessed 03 March 2015

  • Garcés E, Masò M, Camp J (2002) Role of temporary cysts in the population dynamics of Alexandrium taylori (Dinophyceae). J Plankton Res 24:681–686. doi:10.1093/plankt/24.7.681

    Google Scholar 

  • Garrison DL (1981) Monterey Bay phytoplankton. II Resting spore cycles in coastal diatom populations. J Plankton Res 3:137–156. doi:10.1093/plankt/3.1.137

    Google Scholar 

  • Gerssen A, Pol-Hofstad IE, Poelman M, Mulder PPJ, van den Top HJ, de Boer J (2010) Marine toxins: chemistry, toxicity, occurrence and detection, with special reference to the Dutch situation. Toxins 2:878–904. doi:10.3390/toxins2040878#sthash.jl53gaKm.dpuf

    CAS  Google Scholar 

  • Giacobbe MG (2008) Microalghe tossiche sulle coste italiane (Pericoli dell’estate). Darwin 26:90–95

    Google Scholar 

  • Giacobbe MG, Maimone G (1994) First report of Alexandrium minutum Halim in a mediterranean lagoon. Cryptogam Algolog 15:47–52

    Google Scholar 

  • Giacobbe MG, Oliva F, La Ferla R, Puglisi A, Crisafi E, Maimone G (1995) Potentially toxic dinoflagellates in mediterranean waters (Sicily) and related hydrobiological conditions. Aquat Microb Ecol 9:63–68

    Google Scholar 

  • Giacobbe MG, Vila M, Masò M, Garcés E, Luglié A, Sechi N, Gangemi E, Galletta M, Grasso V, Gotsis-Skretas O, Igniatiades L (2006) Is the spreading of the genus Alexandrium (Dinophyceae) in mediterranean coastal waters related to human activities? Biol Mar Medit 13(1):989–993

    Google Scholar 

  • Giacobbe MG, Penna A, Gangemi E, Masò M, Garcés E, Fraga S, Bravo I, Azzaro F, Penna N (2007) Recurrent high-biomass bloooms of Alexandrium taylorii (Dinophyceae), a HAB species expanding in the mediterranean. Hydrobiol 580:125–133. doi:10.1007/978-1-4020-6156-1_11

    CAS  Google Scholar 

  • Glibert PM, Pitcher G (eds) (2001) GEOHAB Global ecology and oceanography of harmful algal blooms, science plan. SCOR andIOC, Baltimore and Paris. http://www.geohab.info/images/stories/documents/final.pdf. Accessed 06 March 2015

  • Gorbi S, Avio GC, Benedetti M, Totti C, Accoroni S, Pichierri S, Bacchiocchi S, Orletti R, Graziosi T, Regoli F (2013) Effects of harmful dinoflagellate Ostreopsis cf. ovata exposure on immunological, histological and oxidative responses of mussels Mytilus galloprovincialis. Fish Shellfish Immunol 35(3):941–950. doi:10.1016/j.fsi.2013.07.003

    CAS  Google Scholar 

  • Granéli E, Weberg M, Salomon PS (2008) Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8(1):94–102. doi:10.1016/j.hal.2008.08.011

    Google Scholar 

  • Granéli E, Edvardsen B, Roelke DL, Hagström JA (2012) The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae 14:260–270. doi:10.1016/j.hal.2011.10.024

    Google Scholar 

  • Hajdu S, Edler L, Olenina I, Witek B (2000) Spreading and establishment of the potentially toxic dinoflagellate Prorocentrum minimum in the Baltic Sea. Int Rev Hydrobiol 85(5–6):561–575

    Google Scholar 

  • Hajdu S, Pertola S, Kuosa H (2005) Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence—a review. Harmful Algae 4(3):471–480. doi:10.1016/j.hal.2004.08.004

    CAS  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99. doi:10.2216/i0031-8884-32-2-79.1

    Google Scholar 

  • Hallegraeff GM (2010) Ocean climate change, Phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46(2):220–235. doi:10.1111/j.1529-8817.2010.00815.x

    CAS  Google Scholar 

  • Halstead BW (2002) The microbial biogenesis of aquatic biotoxins. Toxicol Mech Meth 12(2):135–153. doi:10.1080/10517230290075369

    CAS  Google Scholar 

  • Holmes MJ, Lewis RJ, Poli MA, Gillespie NC (1991) Strain-dependent production of ciguatoxin precursors (Gambiertoxins) by Gambierdiscus toxicus (Dinophyceae) in culture. Toxicon 29(6):761–775. doi:10.1016/0041-0101(91)90068-3

    CAS  Google Scholar 

  • Holmes MJ, Lewis RJ, Jones A, Wong Hoy AW (1995) Cooliatoxin, the first toxin from Coolia monotis (Dinophyceae). Nat Toxins 3(5):355–362. doi:10.1002/nt.2620030506

    CAS  Google Scholar 

  • Honsell G, Boni L, Cabrini M, Pompei M (1992) Toxic or potentially toxic dinoflagellates from the Northern Adriatic Sea. Sci Tot Environ, Suppl, pp 107–114

    Google Scholar 

  • Ichimi K, Suzuki T, Yamasaki M (2001) Non-selective retention of PSP toxins by the mussel Mytilus galloprovincialis fed with the toxic dinoflagellate Alexandrium tamarense. Toxicon 39(12):1917–1921. doi:10.1016/S0041-0101(01)00177-5

    CAS  Google Scholar 

  • International Council for the Exploration of the Sea (1984) Report of the ICES special meeting on the causes, dynamics and effects of exceptional marine blooms and related events. International Council Meeting Paper 1984/ E:42, pp 1–16. http://www.iode.org/index.php?option=com_oe&task=viewDocumentRecord&docID=6966. Accessed 03 March 2015

  • Iverson F, Truelove J, Nera E, Tryphonsas L, Campbell J, Lok E (1989) Domoic acid poisoning and mussel associated intoxication: preliminary investigation into the response of mice and rats to toxic mussel extract. Food Chem Toxicol 27(6):377–384. doi:10.1016/0278-6915(89)90143-9

    CAS  Google Scholar 

  • Jonasson S, Eriksson J, Berntzon L, Spáčil Z, Ilag LL, Ronnevi LO, Rasmussen U, Bergman B (2010) Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci USA 107:9252–9257. doi:10.1073/pnas.0914417107

    CAS  Google Scholar 

  • Kalogerakis N, Arff J, Banat IM, Broch OJ, Daffonchio D, Edvardsen T, Eguiraun H, Giuliano L, Handa A, López-de-Ipiña K, Marigomez I, Martinez I, Øie G, Rojo F, Skjermo J, Zanaroli G, Fava F (2014) The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. New Biotechnol 32(1):157–167. doi:10.1016/j.nbt.2014.03.007

    Google Scholar 

  • Kaniou-Grigoriadou I, Mouratidou T, Katikou P (2005) Investigation on the presence of domoic acid in Greek shellfish. Harmful Algae 4:717–723. doi:10.1016/j.hal.2004.10.002

    CAS  Google Scholar 

  • Katircioǧlu H, Akin BS, Atici T (2004) Microalgal toxin(s): characteristics and importance. Afr J Biotechnol 3(12):667–674

    Google Scholar 

  • Kerbrat AS, Zouher A, Pawlowiez R, Golubic S, Sibat M, Darius HT, Chinain M, Laurent D (2011) First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar Drugs 9:543–560. doi:10.3390/md9040543

    CAS  Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10(2):113–390. doi:10.1080/20026491051695

    Google Scholar 

  • Landsberg J, Van Dolah F, Doucette G (2005) Marine and estuarine harmful algal blooms: impacts on human and animal health. In: Belkin S, Colwell RR (eds) Oceans and health: pathogens in the marine environment. Springer Science+Business Media, Inc, New York, pp 165–210. doi:10.1007/0-387-23709-7_8

  • Lee JS, Igarashi T, Fraga S, Dahl E, Hovgaard P, Yasumoto T (1989) Determination of diarrheic shellfish toxins in various dinoflagellate species. J Appl Phycol 1:147–152. doi:10.1007/BF00003877

    Google Scholar 

  • Li A, Ma J, Cao J, Wang Q, Yu R, Thomas K, Quilliam MA (2012) Analysis of paralytic shellfish toxins and their metabolites in shellfish from the North Yellow Sea of China. Food Addit Contam Part A 29(9):1455–1464. doi:10.1080/19440049.2012.699005

    CAS  Google Scholar 

  • Litaker RW, Vandersea MW, Faust MA, Kibler SR, Nau AW, Holland WC, Chinain M, Holmes MJ, Tester PA (2010) Global distribution of ciguatera causing dinoflagellates in the genus Gambierdiscus. Toxicon 56:711–730. doi:10.1016/j.toxicon.2010.05.017

    CAS  Google Scholar 

  • Liu X, Lu X, Chen Y (2011) The effects of temperature and nutrient rations on Microcystis bloms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10:337–343. doi:10.1016/j.hal.2010.12.002

    Google Scholar 

  • Lugliè A, Giacobbe MG, Fiocca F, Sannio A, Sechi N (2004) The geographical distribution of Alexandrium catenella is extending to Italy! First evidences from the Tyrrhenian Sea. In: Steidinger A, Landsbergh JH, Tomas CR, Vargo GA (eds) Harmful algae 2002. Proceedings of the Xth International Conference on Harmful Algae, St. Pete Beach, Florida, USA, 21–25 Oct 2002, pp 329–331. Florida Fish and Wildlife Conservation Commission and Intergovernmental Oceanographic Commission of UNESCO

    Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1(4):493–509

    Google Scholar 

  • Marine Board—European Science Foundation (2010) Marine biotechnology: a new vision and strategy for Europe. Marine Board-ESF Position Paper 15. http://www.marinebiotech.eu/sites/marinebiotech.eu/files/public/library/MBT%20publications/2010%20ESF%20Position%20Paper.pdf. Accessed 27 Feb 2015

  • Messineo V, Mattei D, Melchiorre S, Salvatore G, Bogialli S, Salzano R, Mazza R, Capelli G, Bruno M (2006) Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Toxicon 48(2):160–174. doi:10.1016/j.toxicon.2006.04.006

    CAS  Google Scholar 

  • Messineo V, Bogialli S, Melchiorre S, Sechi N, Luglié A, Casiddu P, Mariani MA, Padedda BM, Di Corcia A, Mazza R, Carloni E, Bruno M (2009) Cyanobacterial toxins in Italian freshwaters. Limnologica 39(2):95–106. doi:10.1016/j.limno.2008.09.001

    CAS  Google Scholar 

  • Messineo V, Melchiorre S, Di Corcia A, Gallo P, Bruno M (2010) Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano. Central Italy. Environ Toxicol 25(1):18–27. doi:10.1002/tox.20469

    CAS  Google Scholar 

  • Metting B, Pyne JW (1986) Biologically active compounds from microalgae. Enz Microb Technol 8(7):386–394. doi:10.1016/0141-0229(86)90144-4

    CAS  Google Scholar 

  • Mitrovic SM, Pflugmacher S, James KJ, Furey A (2004) Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquacult Toxicol 68(2):185–192. doi:10.1016/j.aquatox.2004.03.017

    CAS  Google Scholar 

  • Mozetič P, Solidoro C, Cossarini G, Socal G, Precali R, Francé J, Bianchi F, De Vittor C, Smodlaka N, Fonda Umani S (2010) Recent trends towards oligotrophication of the Northern Adriatic: evidence from Chlorophyll-a time series. Estuaries Coasts 33:362–375. doi:10.1007/s12237-009-9191-7

    Google Scholar 

  • Munday R, Quilliam MA, LeBlanc P, Lewis N, Gallant P, Sperker SA, Stephen Ewart H, MacKinnon SL (2012) Investigations into the toxicology of spirolides, a group of marine phycotoxins. Toxins 4(1):1–14. doi:10.3390/toxins4010001#sthash.fNyxX5pe.dpuf

    CAS  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334. doi:10.1016/j.hal.2011.10.027

    Google Scholar 

  • Okaichi T, Imatomi Y (1979) Toxicity of Prorocentrum minimum var. mariae-lebouriae assumed to be a causative agent of short-necked clam poisoning. In: Taylor DL, Seliger HH (eds) Toxic dinoflagellates blooms. Elsevier, Amsterdam, pp 385–388

    Google Scholar 

  • Orsini L, Sarno D, Procaccini G, Poletti R, Dahlmann J, Montresor M (2002) Toxic Pseudo-nitzschia multistriata (Bacillariophyceae) from the Gulf of Naples: morphology, toxin analysis and phylogenetic relationships with other Pseudo-nitzschia species. Eur J Phycol 37:247–257. doi:10.1017/S0967026202003608

    Google Scholar 

  • Paerl HW (2008) Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. In: Hudnell KH (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Adv Exp Med Biol 619:217–237. doi:10.1007/978-0-387-75865-7_10

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful Cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65(4):995–1010. doi:10.1007/s00248-012-0159-y

    CAS  Google Scholar 

  • Parsons ML, Aligizaki K, Dechraoui Bottein MY, Fraga S, Morton SL, Penna A, Rhodes L (2012) Gambierdiscus and Ostreopsis: reassessment of the state of knowledge of their taxonomy, geography, ecophysiology, and toxicology. Harmful Algae 14:107–129. doi:10.1016/j.hal.2011.10.017

    CAS  Google Scholar 

  • Paul VJ (2008) Global warming and cyanobacterial harmful algal booms. In: Cyanobacterial harmful algal blooms: state of the science and research needs. In: Hudnell KH (ed) Adv Exp Med Biol 619:239–257. Springer Science+Business Media, LLC, New York. doi:10.1007/978-0-387-75865-7_11

  • Pearce I, Marshall J, Hallegraeff GM (2000) Toxic temperate epiphytic dinoflagellates in coastal lagoons off the east coast of Tasmania. In: Proceedings of the 9th international conference on harmful algal blooms Tasmania 2000, 7–11 Feb 2000, Wrest Point Convention Centre, Hobart, Tasmania, Australia, p 224. http://frdc.com.au/research/Final_Reports/1998-343-DLD.pdf. Accessed 27 Feb 2015

  • Penna A, Garcés E, Vila M, Giacobbe MG, Fraga S, Luglié A, Bravo I, Bertozzini E, Vernesi C (2005) Alexandrium catenella (Dinophyceae), a toxic ribotype expanding in the NW Mediterranean Sea. Mar Biol 148:13–23. doi:10.1007/s00227-005-0067-5

    Google Scholar 

  • Penna A, Bertozzini E, Battocchi C, Galluzzi L, Giacobbe MG, Vila M, Garcés E, Luglié A, Magnani M (2007) Monitoring of HAB species in the Mediterranean Sea through molecular methods. J Plankton Res 29(1):19–38. doi:10.1093/plankt/fbl053

    CAS  Google Scholar 

  • Perini F, Casabianca A, Battocchi C, Accoroni S, Totti C, Penna A (2011) New approach using the real-time PCR method for estimation of the toxic marine dinoflagellate Ostreopsis cf. ovata in marine environment. PLoS ONE 6(3):e17699

    CAS  Google Scholar 

  • Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd ECD, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. New Engl J Med 322:1775–1780

    CAS  Google Scholar 

  • Pitcher GC (2012) The requirement for species-specific information. Preface. Harmful Algae 14:1–4. doi:10.1016/j.hal.2011.10.011

    Google Scholar 

  • Poletti R, Cettul K, Bovo F, Frate R (1995) Evoluzione delle dinoflagellate tossiche nell’alto Adriatico dal 1989 al 1994 e ricaduta sulla commercializzazione dei molluschi eduli. In: Evoluzione dello stato trofico in Adriatico: analisi degli interventi attuali e future linee di intervento. Marina di Ravenna, 28-29 settembre, 1995, pp 253–258. Regione Emilia Romagna, Provincia di Ravenna, Autorità del fiume Po

    Google Scholar 

  • Potts GW, Edwards JM (1987) The impact of a Gyrodinium aureolum bloom on inshore young fish populations. J Mar Biol Ass UK 67:293–297. doi:10.1017/S0025315400026618

    Google Scholar 

  • Quijano-Scheggia S, Garcés E, Van Lenning K, Sampedro N, Camp J (2005) First time detection of the diatom species Pseudo-nitzschia brasiliana (non toxic) and its relative P. multistriata (presumably toxic) algon the NW mediterranean Sea. Harmful Algal News 29:5

    Google Scholar 

  • Rabbani MM, Rehman AU, Harms EC (1990) Mass mortality of fishes caused by dinoflagellate blooms in Gwadar Bay, Southwestern Pakistan. In: Graneli E, SunDSTrom B, Edler L, Anderson DM (eds) Toxic Marine Phytoplankton. Elsevier, Amsterdam, pp 209–214

    Google Scholar 

  • Reguera B, Velo-Suárez L, Raine R, Park RG (2012) Harmful Dinophysis species: a review. Harmful Algae 14:87–106

    Google Scholar 

  • Reynolds CS (1988) The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh Int Ver Limnol 23:683–691

    Google Scholar 

  • Reynolds CS, Smayda TJ (1998) Principles of species selection and community assembly in the phytoplankton: further explorations of the Mandala. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago de Compostela, pp 8–10

    Google Scholar 

  • Rossini GP (ed) (2014) Toxins and Biologically active compounds from microalgae. CRC Press, Boca Raton

    Google Scholar 

  • Sansoni G, Borghini B, Camici G, Casotti M, Righini P, Rustighi C (2003) Fioriture algali di Ostreopsis ovata (Gonyaulacales: Dinophyceae): un problema emergente. Biologia Ambientale 17(1):17–23

    Google Scholar 

  • Sechet V, Quilliam AM, Rocher G (1998) Diarrhetic Shellfish Poisoning (DSP) toxins in Prorocentrum lima in axenic and non-axenic batch culture: detection of new compound and kinetics of production. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Hamful algae. Xunta de Galicia and intergovernmental oceanographic commission of UNESCO, Santiago de Compostela, pp 485–488

    Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. A guide to their public health consequences. monitoring and management. E and FN Spoon, London, pp 41–111

    Google Scholar 

  • Skulberg OM (1999) The biological nature of cyanotoxins-types and effects. In: ICRO-UNESCO workshop and training course notes. Pannon Agric. University, Hungary

    Google Scholar 

  • Skulberg OM, Skulberg R (1985) Planktic species of Oscillatoria (Cyanophyceae) from Norway—characterization and classification. Arch Hydrobiol Suppl 71 Algol Stud 38/39:157–174

    Google Scholar 

  • Steidinger KA, Burklew MA, Ingle RM (1973) The effects of Gymnodinium breve toxin on estuarine animals. In: Martin DF, Padilla GM (eds) Marine pharmacology, action of marine biotoxins at the cellular level, Chapter VI. Academic Press, New York, pp 179–202

    Google Scholar 

  • Sykes PF, Huntley ME (1987) Acute physiological reactions of Calanus pacificus to selected dinoflagellates: direct observations. Mar Biol 94:19–24. doi:10.1007/BF00392895

    Google Scholar 

  • Tosteson RT, Ballantine LD, Winter A (1998). Sea surface temperature, benthic dinoflagellate toxicity and toxin transmission in the ciguatera food web. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago de Compostela, pp 48–49

    Google Scholar 

  • Totti C, Civitarese G, Acri F, Barletta D, Candelari G, Paschini E, Solazzi A (2000) Seasonal variability of phytoplankton populations in the middle Adriatic sub-basin. J Plankton Res 22(9):1735–1756. doi:10.1093/plankt/22.9.1735

    Google Scholar 

  • Totti C, Accoroni S, Cerino F, Cucchiari E, Romagnoli T (2010) Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): Relationships with environmental conditions and substrata. Harmful Algae 9(2):233–239. doi:10.1016/j.hal.2009.10.006

    Google Scholar 

  • Tubaro A, Sosa S, Bruna M, Gucci PMB, Volterra L, Loggia RD (1992) Diarrhoeic shellfish toxins in Adriatic sea mussels evaluated by an Elisa method. Toxicon 30(5/6):673–676. doi:10.1016/0041-0101(92)90861-X

    CAS  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (eds) (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • van Dolah FM (2000) Marine algal toxins: origins, health effects, and their increased occurrence. Environ Health Perspect 108(Suppl 1):133–141

    Google Scholar 

  • Vila M, Camp J, Garcés E, Masó M, Delgado M (2001) High resolution spatio-temporal detection of potentially harmful dinoflagellates in confined waters of the NW Mediterranean. J Plankton Res 23(5):497–514. doi:10.1093/plankt/23.5.497

    Google Scholar 

  • Vila M, Giacobbe MG, Masó M, Gangemi E, Penna A, Sampedro N, Azzaro F, Camp J, Galluzzi L (2005) A comparative study on recurrent blooms of Alexandrium minutum in two mediterranean coastal areas. Harmful Algae 4:673–695. doi:10.1016/j.hal.2004.07.006

    Google Scholar 

  • Viviani R (1992) Biotossine e prodotti della pesca e dell’acquacoltura. Laguna 5:73–83

    Google Scholar 

  • White AW (1984) Paralytic shellfish toxins and finfish. In: Ragelis EP (ed) Seafood toxins, ACS symposium series 262. American Chemical Society, Washington, pp 171–180

    Google Scholar 

  • Yasumoto T, Oshima Y, Yamaguchi M (1978) Occurrence of a new type of shellfish poisoning in the Tohoku district. Nippon Suisan Gakkaishi 44(II):1249–1255

    Google Scholar 

  • Zingone A, Wyatt T (2005) Harmful algal blooms: keys to the understanding of phytoplankton ecology. In: Robinson AR, Brink KH (eds) The Sea. the global coastal ocean: multiscale interdisciplinary processes. Harvard University Press, Harvard

    Google Scholar 

  • Zingone A, Garcés E, Wyatt T, Silvert B, Bolch C (2001) The importance of life cycles in the ecology of harmful algal blooms. In: Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) LIFEHAB life histories of microalgal species causing harmful blooms. European Commission Directorate General, Science, Research and Development

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Parisi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Santi Delia, A., Caruso, G., Melcarne, L., Caruso, G., Parisi, S., Laganà, P. (2015). Biological Toxins from Marine and Freshwater Microalgae. In: Microbial Toxins and Related Contamination in the Food Industry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-20559-5_2

Download citation

Publish with us

Policies and ethics