Skip to main content

Histamine in Fish and Fishery Products

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

Abstract

The consumption of certain fish products containing high levels of histamine (and other biogenic amines) can result in an acute illness with allergy-like symptoms called scombroid syndrome. Fish accumulate toxic levels of histamine when their high level of histidine in muscle tissues is coupled with a proliferation of bacteria rich in the enzyme histidine decarboxylase. Other vasoactive amines—cadaverine, putrescine, etc.—may inhibit detoxification mechanisms that reduce the intestinal absorption of histamine. Moreover, histidine can be transformed by means of another metabolic pathway leading to accumulation in fish muscle of urocanic acid. Recently, interest has been extended to mesophilic and psychrotolerant bacteria. Histamine accumulation is traditionally correlated to microbially contaminated fish and poor storage conditions. In addition, the high thermal stability has to be considered. At present, different methods are available for the analytical determination of histamine ranging from the AOAC fluorometric method to HPLC, ELISA and rapid stick methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ELISA:

Enzyme-Linked Immunosorbent Assay

FAO:

Food and Agriculture Organization

FDA:

Food and Drug Administration

HACCP:

Hazard Analysis and Critical Control Points

HPLC:

High-Performance Liquid Chromatography

WHO:

World Health Organization

References

  • Alini DA, Bassoni MS, Biancardi M, Magnani V, Martinotti RG (2006) The scombroid syndrome (Histamine Fish Poisoning): a review. Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Webzine Sanità Pubblica Veterinaria No 38 Novembre 2006. http://spvet.it/arretrati/numero-38/sgombroide.html. Accessed 20 April 2015

  • Antoine FR, Wei CI, Littell RC, Marshall MR (1999) HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J Agric Food Chem 47(12):5100–5107. doi:10.1021/jf990032+

  • Behling AR, Taylor SL (1982) Bacterial histamine production as a function of temperature and time of incubation. J Food Sci 47(4):1311–1314. doi:10.1111/j.1365-2621.1982.tb07675.x

    Article  CAS  Google Scholar 

  • Brunazzi G, Parisi S, Pereno A (2014) The Instrumental Role of Food Packaging. In: Brunazzi G, Parisi S, Pereno A (ed) The importance of packaging design for the chemistry of food products. Springer International Publishing, Heidelberg. doi:10.1007/978-3-319-08452-7_3

  • Cattaneo P (2011) Scombroid syndrome—histamine poisoning. Food In 1(2):5–80. doi:10.13130/2039-1544/1702

    Google Scholar 

  • Chamberlain T (2001) Histamine levels in longlined tuna in Fiji: a comparison of samples from two different body sites and the effect of storage at different temperatures. S Pac J Nat Sci 19(1):30–34. doi:10.1071/SP01006

    Google Scholar 

  • Chambers TL, Staruszkiewicz WF Jr (1978) Fluorometric determination of histamine in cheese. J Assoc Off Anal Chem 61(5):1092–1097

    CAS  Google Scholar 

  • Chang SC, Kung HF, Chen HC, Lin CS, Tsai YH (2008) Determination of histamine and bacterial isolation in swordfish fillets (Xiphias gladius) implicated in a food borne poisoning. Food Control 19(1):16–21. doi:10.1016/j.foodcont.2007.01.005

    Article  CAS  Google Scholar 

  • Dalgaard P (2009) Seafood Spoilage and Safety Predictor (SSSP). Version 3.1. Lyngby, Denmark, National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark

    Google Scholar 

  • Dierick N, Vandekerckhove P, Demeyer D (1974) Changes in nonprotein nitrogen compounds during dry sausage ripening. J Food Sci 39(2):301–304. doi:10.1111/j.1365-2621.1974.tb02880.x

    Article  CAS  Google Scholar 

  • Doeglas HMG, Huisman J, Nater JP (1967) Histamine intoxication after cheese. Lancet 2(7530):1361–1362. doi:10.1016/S0140-6736(67)90948-8

  • Du WX, Lin CM, Phu AT, Cornell JA, Marshall MR, Wei CI (2002) Development of biogenic amines in yellowfin tuna (Thunnus albacares): effect of storage and correlation with decarboxylase-positive bacterial flora. J Food Sci 67(1):292–301. doi:10.1111/j.1365-2621.2002.tb11400.x

    Article  CAS  Google Scholar 

  • Duflos G, Dervin C, Malle P, Bouquelet S (1999) Relevance of matrix effect in determination of biogenic amines in plaice (Pleuronectes platessa) and whiting (Merlangus merlangus). J AOAC Int 82(5):1097–1101

    CAS  Google Scholar 

  • Emborg J (2007) Morganella psychrotolerans—identification, histamine formation and importance for histamine fish poisoning. Dissertation, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Systems BiologyInstitut for Systembiologi. http://orbit.dtu.dk/fedora/objects/orbit:82220/datastreams/file_4687217/content. Accessed 21 April 2015

  • Emborg J, Dalgaard P (2006) Formation of histamine and biogenic amines in cold-smoked tuna—an investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. J Food Prot 69(4):897–906

    CAS  Google Scholar 

  • FAO/WHO (2012) Joint FAO/WHO expert meeting on the public health risks of histamine and other biogenic amines from fish and fishery products. 23–27 July 2012, FAO Headquarters, Rome. Meeting Report. The Food and Agriculture Organization (FAO) of the United States and the World Health Organization (WHO), Rome. http://www.fao.org/3/a-i3390e.pdf. Accessed 20 April 2015

  • FDA (1982) Defect action levels for histamine in tuna, availability of guide. Fed Reg 470:40487–40488. Food and Drug Administration, Department of Health and Human Services, Silver Spring

    Google Scholar 

  • FDA (2005) Decomposition and histamine in raw, frozen tuna and mahi-mahi, canned tuna; and related species. Compliance Policy Guide (CPG) Sec. 540.525. Food and Drug Administration, Silver Spring

    Google Scholar 

  • FDA (2011) Fish and fishery products hazards and controls guidance, 4th edn. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park. http://www.fda.gov/downloads/Food/GuidanceRegulation/UCM251970.pdf. Accessed 17 April 2015

  • Guizani N, Al-Busaidy MA, Al-Belushi IM, Mothershaw A, Rahman MS (2005) The effect of storage temperature on histamine production and the freshness of yellowfin tuna (Thunnus albacares). Food Res Int 38(2):215–222. doi:10.1016/j.foodres.2004.09.011

    Article  CAS  Google Scholar 

  • Hastein T, Hjeltnes B, Lillehaug A, Utne Skare J, Berntssen M, Lundebye AK (2006) Food safety hazards that occur during the production stage: challenges for fish farming and the fishing industry. Rev Sci Tech 25(2):607–625

    CAS  Google Scholar 

  • Hernández-Herrero MM, Roig-Sagués AX, Rodríguez-Jerez JJ, Mora-Ventura MT (1999) Halotolerant and halophilic histamine-forming bacteria isolated during the ripening of salted Anchovies (Engraulis encrasicholus). J Food Prot 62(5):509–514

    Google Scholar 

  • Hungerford JM (2010) Scombroid poisoning: a review. Toxicon 56(2):231–243. doi:10.1016/j.toxicon.2010.02.006

    Article  CAS  Google Scholar 

  • Kahana LM, Todd E (1981) Histamine poisoning in a patient on isoniazid. Can Dis Wkly Rep 7:79–80

    Google Scholar 

  • Kanki M, Yoda T, Ishibashi M, Tsukamoto T (2004) Photobacterium phosphoreum caused a histamine fish poisoning incident. Int J Food Microbiol 92(1):79–87. doi:10.1016/j.ijfoodmicro.2003.08.019

    Article  CAS  Google Scholar 

  • Lehane L, Olley J (2000) Histamine fish poisoning revisited. Int J Food Microbiol 58(1–2):1–37. doi:10.1016/S0168-1605(00)00296-8

    Article  CAS  Google Scholar 

  • Leuschner RGK, Hammes WP (1999) Formation of biogenic amine in mayonnaise, herring and tuna fish salad by lactobacilli. Int J Food Sci Nutr 50(3):159–164. doi:10.1080/096374899101193

    Article  CAS  Google Scholar 

  • López-Sabater EI, Rodríguez-Jerez JJ, Roig-Sagués AX, Mora-Ventura MA (1994) Bacteriological quality of tuna fish (Thunnus thynnus) destined for canning: effect of tuna handling on presence of histidine decarboxylase bacteria and histamine level. J Food Prot 57(4):318–323

    Google Scholar 

  • Malle P, Valle M, Bouquelet S (1996) Assay of biogenic amines involved in fish decomposition. J AOAC Int 79(1):43–49

    CAS  Google Scholar 

  • Mayer K, Pause G (1972) Biogene amine in Sauerkraut. Lebensm Wiss Technol 5:108–109

    CAS  Google Scholar 

  • Naila A, Flint S, Fletcher G, Bremer P, Meerdink G (2010) Control of biogenic amines in food—existing and emerging approaches. J Food Sci 75(7):R139–R150. doi:10.1111/j.1750-3841.2010.01774.x

    Article  CAS  Google Scholar 

  • Onal A (2007) A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem 103(4):1475–1486. doi:10.1016/j.foodchem.2006.08.028

    Article  Google Scholar 

  • Ough CS (1971) Measurement of histamine in California wines. J Agric Food Chem 19(2):241–244. doi:10.1021/jf60174a038

    Article  CAS  Google Scholar 

  • Őzogul E, Taylor KDA, Quantick P, Őzogul Y (2002) Changes in biogenic amines in herring stored under modified atmosphere and vacuum pack. J Food Sci 67(7):2497–2501. doi:10.1111/j.1365-2621.2002.tb08765.x

    Article  Google Scholar 

  • Parisi S (2009) Intelligent packaging for the food industry. Polymer electronics—a flexible technology. Smithers Rapra Technology Ltd, Shawbury

    Google Scholar 

  • Prester L (2011) Biogenic amines in fish, fish products and shellfish: a review. Food Add Contam Part A 28(11):1547–1560. doi:10.1080/19440049.2011.600728

    Article  CAS  Google Scholar 

  • Rawles DD, Flick GJ, Martin RE (1996) Biogenic amines in fish and shellfish. Adv Food Nutr Res 39:329–365. doi:10.1016/S1043-4526(08)60076-5

    Article  CAS  Google Scholar 

  • Rossano R, Mastrangelo L, Ungaro N, Riccio P (2006) Influence of storage temperature and freezing time on histamine level in the European anchovy Engraulis encrasicholus (L., 1758): a study by capillary electrophoresis. J Chrom B 830, 1:161–164. doi:10.1016/j.jchromb.2005.10.026

  • Ruiz-Capillas C, Moral A (2004) Free amino acids and biogenic amines in red and white muscle of tuna stored in controlled atmospheres. Amino Acids 26(2):125–132. doi:10.1007/s00726-003-0054-4

    Article  CAS  Google Scholar 

  • Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29(7):675–690. doi:10.1016/S0963-9969(96)00066-X

    Article  CAS  Google Scholar 

  • Silva CCG, Da Ponte DBJ, Dapkevicius MLNE (1998) Storage temperature effect on histamine formation in big eye tuna and skipjack. J Food Sci 63(4):644–647. doi:10.1111/j.1365-2621.1998.tb15803.x

    Article  CAS  Google Scholar 

  • Taylor SL (1986) Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol 17(2):91–128. doi:10.3109/10408448609023767

    Article  CAS  Google Scholar 

  • Taylor SL, Lieber ER (1979) In vivo inhibition of rat intestinal histamine metabolizing enzymes. Food Cosmet Toxicol 17(3):237–240. doi:10.1016/0015-6264(79)90287-6

    Article  CAS  Google Scholar 

  • Taylor SL, Leatherwood M, Lieber ER (1978) Histamine in sauerkraut. J Food Sci 43(3):1030. doi:10.1111/j.1365-2621.1978.tb02481.x

    Article  CAS  Google Scholar 

  • Tortorella V, Masciari P, Pezzi M, Mola A, Tiburzi SP, Zinzi MC, Scozzafava A, Verre M (2014) Histamine poisoning from ingestion of fish or scombroid syndrome. Case Rep Emerg Med Article ID 482531. doi:10.1155/2014/482531

  • Tsironi T, Gogou E, Velliou E, Taoukis PS (2008) Application and validation of the TTI based chill chain management system SMAS (Safety monitoring and assurance system) on shelf life optimization of vacuum packed chilled tuna. Int J Food Microbiol 128(1):108–115. doi:10.1016/j.ijfoodmicro.2008.07.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Parisi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Parisi, S., Barone, C., Caruso, G., Santi Delia, A., Caruso, G., Laganà, P. (2015). Histamine in Fish and Fishery Products. In: Microbial Toxins and Related Contamination in the Food Industry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-20559-5_1

Download citation

Publish with us

Policies and ethics